Skip to main content
Top
Published in: BIT Numerical Mathematics 1/2020

05-09-2019

Application of CCC–Schoenberg operators on image resampling

Authors: Tina Bosner, Bojan Crnković, Jerko Škifić

Published in: BIT Numerical Mathematics | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image resampling is a widely used tool in image processing. The upsampling increases the number of pixels and introduces new information to the image which can have undesired effects, like ringing artifacts and oscillations, aliasing “jagged” lines effect, or introduces too much numerical diffusion. Histopolation upsampling methods produce much sharper images but are more prone to aliasing and ringing effect and oscillations which appear as spurious signals near sharp transitions in color intensity. In this paper, we propose an efficient and fast quasi-histopolation algorithm based on the Canonical Complete Chebyshev–Schoenberg operator approximations, applied dimension by dimension. These approximations, because of their shape preserving properties, avoid oscillations. Presented methods have several tunable parameters that control tension and shape properties of the approximation which are used to reduce the aliasing effect while keeping the image visually sharp. Numerical tests on real and artificial images demonstrate the effectiveness and show the computational efficiency of the proposed algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Battiato, S., Gallo, G., Stanco, F.: A locally adaptive zooming algorithm for digital images. Image Vis. Comput. 20, 805–812 (2002)CrossRef Battiato, S., Gallo, G., Stanco, F.: A locally adaptive zooming algorithm for digital images. Image Vis. Comput. 20, 805–812 (2002)CrossRef
3.
go back to reference Bosner, T., Crković, B., Škifić, J.: Tension splines with application on image resampling. Math. Commun. 19(3), 517–529 (2014)MathSciNetMATH Bosner, T., Crković, B., Škifić, J.: Tension splines with application on image resampling. Math. Commun. 19(3), 517–529 (2014)MathSciNetMATH
5.
go back to reference Bosner, T., Rogina, M.: Variable degree polynomial splines are Chebyshev splines. Adv. Comput. Math. 38, 383–400 (2013)MathSciNetCrossRef Bosner, T., Rogina, M.: Variable degree polynomial splines are Chebyshev splines. Adv. Comput. Math. 38, 383–400 (2013)MathSciNetCrossRef
7.
go back to reference Costantini, P.: Shape-preserving interpolation with variable degree polynomial splines. In: Hoschek, J., Kaklis, P.D. (eds.) Advanced Course on FAIRSHAPE, pp. 87–114. Vieweg+Teubner Verlag, Wiesbaden (1996)CrossRef Costantini, P.: Shape-preserving interpolation with variable degree polynomial splines. In: Hoschek, J., Kaklis, P.D. (eds.) Advanced Course on FAIRSHAPE, pp. 87–114. Vieweg+Teubner Verlag, Wiesbaden (1996)CrossRef
8.
go back to reference Costantini, P.: Variable degree polynomial splines. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 85–94. Vanderbilt University Press, Nashville (1997) Costantini, P.: Variable degree polynomial splines. In: Méhauté, A.L., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 85–94. Vanderbilt University Press, Nashville (1997)
9.
go back to reference Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)MathSciNetCrossRef Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)MathSciNetCrossRef
10.
go back to reference Costantini, P.: Properties and applications of new polynomial spaces. Int. J. Wavelets Multiresolut. Inf. Process. 4(3), 489–507 (2006)MathSciNetCrossRef Costantini, P.: Properties and applications of new polynomial spaces. Int. J. Wavelets Multiresolut. Inf. Process. 4(3), 489–507 (2006)MathSciNetCrossRef
11.
13.
go back to reference Gao, R., Song, J., Tai, X.: Image zooming algorithm based on partial differential equations. Int. J. Numer. Anal. Model. 6(2), 284–292 (2009)MathSciNetMATH Gao, R., Song, J., Tai, X.: Image zooming algorithm based on partial differential equations. Int. J. Numer. Anal. Model. 6(2), 284–292 (2009)MathSciNetMATH
15.
go back to reference Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, New York (1992) Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, New York (1992)
16.
17.
go back to reference Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)CrossRef Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–517 (1978)CrossRef
19.
go back to reference Kaklis, P.D., Pandelis, D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 10, 223–234 (1990)MathSciNetCrossRef Kaklis, P.D., Pandelis, D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 10, 223–234 (1990)MathSciNetCrossRef
20.
go back to reference Kaklis, P.D., Sapidis, N.S.: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Comput. Aided Geom. Des. 12, 1–26 (1995)MathSciNetCrossRef Kaklis, P.D., Sapidis, N.S.: Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree. Comput. Aided Geom. Des. 12, 1–26 (1995)MathSciNetCrossRef
21.
go back to reference Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)MathSciNetCrossRef Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)MathSciNetCrossRef
22.
go back to reference Kvasov, B.I.: Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)CrossRef Kvasov, B.I.: Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)CrossRef
23.
go back to reference Mazure, M.L.: Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines. Comput. Aided Geom. Des. 18, 287–298 (2001)MathSciNetCrossRef Mazure, M.L.: Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines. Comput. Aided Geom. Des. 18, 287–298 (2001)MathSciNetCrossRef
25.
go back to reference Mazure, M.L.: Piecewise Chebyshev–Schoenberg operators: shape preservation, approximation and space embedding. J. Approx. Theory 166, 106–135 (2013)MathSciNetCrossRef Mazure, M.L.: Piecewise Chebyshev–Schoenberg operators: shape preservation, approximation and space embedding. J. Approx. Theory 166, 106–135 (2013)MathSciNetCrossRef
26.
go back to reference Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. Comput. Graph. 22(4), 221–228 (1988)CrossRef Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. Comput. Graph. 22(4), 221–228 (1988)CrossRef
27.
go back to reference Pidatella, R.M., Stanco, F., Santaera, C.: ENO/WENO interpolation methods for zooming of digital images. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II. Series on Advances in Mathematics for Applied Sciences, vol. 75, pp. 480–491. World Scientific Publishing, Singapore (2007)CrossRef Pidatella, R.M., Stanco, F., Santaera, C.: ENO/WENO interpolation methods for zooming of digital images. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II. Series on Advances in Mathematics for Applied Sciences, vol. 75, pp. 480–491. World Scientific Publishing, Singapore (2007)CrossRef
28.
go back to reference Robidoux, N., Gong, M., Cupitt, J., Turcotte, A., Martinez, K.: CPU, SMP and GPU implementations of Nohalo level 1, a fast co-convex antialiasing image resampler (2009) Robidoux, N., Gong, M., Cupitt, J., Turcotte, A., Martinez, K.: CPU, SMP and GPU implementations of Nohalo level 1, a fast co-convex antialiasing image resampler (2009)
29.
go back to reference Robidoux, N., Turcotte, A., Gong, M., Tousignant, A.: Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines, pp. 85–96. Springer, Berlin, Heidelberg (2008) Robidoux, N., Turcotte, A., Gong, M., Tousignant, A.: Fast Exact Area Image Upsampling with Natural Biquadratic Histosplines, pp. 85–96. Springer, Berlin, Heidelberg (2008)
30.
go back to reference Schoenberg, I.J.: Splines and histograms. In: Blanc, C., Ghizzetti, A., Ostrowski, A., Todd, J., van Wijngaarden, A. (eds.) Spline Function and Approximation Theory, ISNM, vol. 21, pp. 277–358. Birkhäuser Verlag, Basel und Stuttgart (1973)CrossRef Schoenberg, I.J.: Splines and histograms. In: Blanc, C., Ghizzetti, A., Ostrowski, A., Todd, J., van Wijngaarden, A. (eds.) Spline Function and Approximation Theory, ISNM, vol. 21, pp. 277–358. Birkhäuser Verlag, Basel und Stuttgart (1973)CrossRef
32.
go back to reference Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)MATH Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)MATH
33.
go back to reference Strong, D.M., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. In: Inverse Problems, pp. 165–187 (2000) Strong, D.M., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. In: Inverse Problems, pp. 165–187 (2000)
34.
go back to reference Tian, Q., Wen, H., Zhou, C., Chen, W.: A fast edge-directed interpolation algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) Neural Information Processing, pp. 398–405. Springer, Berlin (2012)CrossRef Tian, Q., Wen, H., Zhou, C., Chen, W.: A fast edge-directed interpolation algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) Neural Information Processing, pp. 398–405. Springer, Berlin (2012)CrossRef
35.
go back to reference Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRef Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRef
36.
go back to reference Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 1398–1402 (2003) Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proceedings of IEEE Asilomar Conference on Signals, Systems, and Computers, pp. 1398–1402 (2003)
Metadata
Title
Application of CCC–Schoenberg operators on image resampling
Authors
Tina Bosner
Bojan Crnković
Jerko Škifić
Publication date
05-09-2019
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 1/2020
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00770-7

Other articles of this Issue 1/2020

BIT Numerical Mathematics 1/2020 Go to the issue

Premium Partner