Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 1/2019

06-07-2018 | Original Article

Application of chemical equilibrium calculations for the prediction of ash-induced agglomeration

Authors: Bernhard Gatternig, Jürgen Karl

Published in: Biomass Conversion and Biorefinery | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Energy crops and biogeneous residues offer the highest potential for future growth in biomass utilization. Traditional forest-grown wood types, along with their consistent combustion characteristics, will thus be replaced by fuels with highly heterogeneous composition. Reliable prediction of their combustion characteristics and in particular of their ash behavior is essential for plant designers and operators trying to harvest this potential for energy conversion. In fluidized bed combustion, the fuel ash-induced agglomeration of the bed materials is one such behavior that needs to be described. This paper describes the application of chemical equilibrium calculations to determine the governing properties of the agglomeration process. Using FactSage 6.2, the thickness of ash coatings and their resulting compositions were evaluated. These were then used to deduce properties of the molten ash (viscosity, surface tension, and density), from adapted empirical models. The validation of the properties was performed on experimental data published in literature. Calculated coating thickness shows good agreement with microscopic measurements of agglomerated bed material. The adapted model for surface tension is within 10% of published results. The viscosity model published by Lakatos was chosen to give the best agreement for biomass ash-derived melts in the applicable temperature region. The results can thus be readily used for analytical modeling or numerical approaches aimed at determining agglomeration tendencies of novel biomass species.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Latva-Somppi J, Kauppinen EI, Valmari T, Ahonen P, Gurav AS, Kodas T, Johanson B (1998) The ash formation during co-combustion of wood and sludge in industrial fluidized bed boilers. Fuel Process Technol 54:79–94CrossRef Latva-Somppi J, Kauppinen EI, Valmari T, Ahonen P, Gurav AS, Kodas T, Johanson B (1998) The ash formation during co-combustion of wood and sludge in industrial fluidized bed boilers. Fuel Process Technol 54:79–94CrossRef
6.
go back to reference Gatternig B, Karl J (2015) Investigations on the mechanisms of ash-induced agglomeration in fluidized-bed combustion of biomass. Energy Fuel 29:931–941CrossRef Gatternig B, Karl J (2015) Investigations on the mechanisms of ash-induced agglomeration in fluidized-bed combustion of biomass. Energy Fuel 29:931–941CrossRef
10.
go back to reference Natarajan E, Öhman M, Gabra M, Nordin A, Liliedahl T, Rao AN (1998) Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification. Biomass Bioenergy 15:163–169CrossRef Natarajan E, Öhman M, Gabra M, Nordin A, Liliedahl T, Rao AN (1998) Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification. Biomass Bioenergy 15:163–169CrossRef
12.
go back to reference Ergudenler A, Ghaly AE (1993) Agglomeration of alumina sand in a fluidized bed straw gasifier at elevated temperatures. Bioresour Technol 43:259–268CrossRef Ergudenler A, Ghaly AE (1993) Agglomeration of alumina sand in a fluidized bed straw gasifier at elevated temperatures. Bioresour Technol 43:259–268CrossRef
13.
go back to reference Gatternig B, Karl J (2014) The influence of particle size, fluidization velocity and fuel type on ash-induced agglomeration in biomass combustion. Front Energy Res 2:51CrossRef Gatternig B, Karl J (2014) The influence of particle size, fluidization velocity and fuel type on ash-induced agglomeration in biomass combustion. Front Energy Res 2:51CrossRef
14.
go back to reference Nordin A, Öhman M, Skrifvars B-J, Hupa M (1995) Agglomeration and defluidization in FBC of biomass fuels—mechanisms and measures for prevention. In: Proc. 1995 Eng. Found. Ash Conf., Waterville Valley. pp 16–22 Nordin A, Öhman M, Skrifvars B-J, Hupa M (1995) Agglomeration and defluidization in FBC of biomass fuels—mechanisms and measures for prevention. In: Proc. 1995 Eng. Found. Ash Conf., Waterville Valley. pp 16–22
15.
go back to reference Seggiani M (1999) Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel 78:1121–1125CrossRef Seggiani M (1999) Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel 78:1121–1125CrossRef
16.
go back to reference Visser HJM, Kiel JHA, Veringa HJ (2004) The influence of fuel composition on agglomeration behaviour in fluidised-bed combustion. Energy Research Centre of the Netherlands ECN Visser HJM, Kiel JHA, Veringa HJ (2004) The influence of fuel composition on agglomeration behaviour in fluidised-bed combustion. Energy Research Centre of the Netherlands ECN
17.
go back to reference Hansen LA, Frandsen FJ, Dam-Johansen K, Sørensen HS (1999) Quantification of fusion in ashes from solid fuel combustion. Thermochim Acta 326:105–117CrossRef Hansen LA, Frandsen FJ, Dam-Johansen K, Sørensen HS (1999) Quantification of fusion in ashes from solid fuel combustion. Thermochim Acta 326:105–117CrossRef
20.
go back to reference Blander M, Milne TA, Dayton DC, Backman R, Blake D, Kühnel V, Linak W, Nordin A, Ljung A (2001) Equilibrium chemistry of biomass combustion: a round-robin set of calculations using available computer programs and databases. Energy Fuel 15:344–349. https://doi.org/10.1021/ef0001181 CrossRef Blander M, Milne TA, Dayton DC, Backman R, Blake D, Kühnel V, Linak W, Nordin A, Ljung A (2001) Equilibrium chemistry of biomass combustion: a round-robin set of calculations using available computer programs and databases. Energy Fuel 15:344–349. https://​doi.​org/​10.​1021/​ef0001181 CrossRef
21.
go back to reference Backman R, Hupa M, Hiltunen M, Peltola K (2005) Interaction of the behavior of lead and zinc with alkalis in fluidized bed combustion or gasification of waste derived fuels Backman R, Hupa M, Hiltunen M, Peltola K (2005) Interaction of the behavior of lead and zinc with alkalis in fluidized bed combustion or gasification of waste derived fuels
22.
go back to reference Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall Mater Trans A 32:1409–1416CrossRef Pelton AD, Chartrand P, Eriksson G (2001) The modified quasi-chemical model: Part IV. Two-sublattice quadruplet approximation. Metall Mater Trans A 32:1409–1416CrossRef
23.
go back to reference Kang Y-B, Pelton AD (2009) Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall Mater Trans B Process Metall Mater Process Sci 40:979–994CrossRef Kang Y-B, Pelton AD (2009) Thermodynamic model and database for sulfides dissolved in molten oxide slags. Metall Mater Trans B Process Metall Mater Process Sci 40:979–994CrossRef
29.
go back to reference Skrifvars B-J, Backman R, Hupa M (1998) Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations. Fuel Process Technol 56:55–67CrossRef Skrifvars B-J, Backman R, Hupa M (1998) Characterization of the sintering tendency of ten biomass ashes in FBC conditions by a laboratory test and by phase equilibrium calculations. Fuel Process Technol 56:55–67CrossRef
30.
go back to reference Zevenhoven-Onderwater M, Backman R, Skrifvars B-J, Hupa M (2001) The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction. Fuel 80:1489–1502CrossRef Zevenhoven-Onderwater M, Backman R, Skrifvars B-J, Hupa M (2001) The ash chemistry in fluidised bed gasification of biomass fuels. Part I: predicting the chemistry of melting ashes and ash–bed material interaction. Fuel 80:1489–1502CrossRef
31.
go back to reference Jak E (2002) Prediction of coal ash fusion temperatures with the F∗A∗C∗T thermodynamic computer package. Fuel 81:1655–1668CrossRef Jak E (2002) Prediction of coal ash fusion temperatures with the F∗A∗C∗T thermodynamic computer package. Fuel 81:1655–1668CrossRef
32.
35.
go back to reference Lindström E, Sandström M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuel 21:710–717CrossRef Lindström E, Sandström M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuel 21:710–717CrossRef
36.
go back to reference Zheng Y, Jensen PA, Jensen AD, Sander B, Junker H (2007) Ash transformation during co-firing coal and straw. Fuel 86:1008–1020CrossRef Zheng Y, Jensen PA, Jensen AD, Sander B, Junker H (2007) Ash transformation during co-firing coal and straw. Fuel 86:1008–1020CrossRef
37.
38.
go back to reference De Geyter S, Öhman M, Eriksson M, Boström D, Berg M (2005) Agglomeration characteristics using alternative bed materials for combustion of biomass. In: 14th European biomass conference-biomass for energy, industry and climate protection. pp 17–21 De Geyter S, Öhman M, Eriksson M, Boström D, Berg M (2005) Agglomeration characteristics using alternative bed materials for combustion of biomass. In: 14th European biomass conference-biomass for energy, industry and climate protection. pp 17–21
39.
43.
go back to reference Öhman M, Boman C, Erhardsson T, Gilbe C, Pommer L, Boström D, Nordin A, Samuelsson R, Burvall J (2006) Minskade askrelaterade driftsproblem (beläggning, slaggning, högtemperaturkorrosion, bäddagglomerering) genom inblandning av torv i biobränslen. Värmeforsk Rapp 999 Öhman M, Boman C, Erhardsson T, Gilbe C, Pommer L, Boström D, Nordin A, Samuelsson R, Burvall J (2006) Minskade askrelaterade driftsproblem (beläggning, slaggning, högtemperaturkorrosion, bäddagglomerering) genom inblandning av torv i biobränslen. Värmeforsk Rapp 999
44.
go back to reference Öhman M, Nordin A (1998) A new method for quantification of fluidized bed agglomeration tendencies: a sensitivity analysis. Energy Fuel 12:90–94CrossRef Öhman M, Nordin A (1998) A new method for quantification of fluidized bed agglomeration tendencies: a sensitivity analysis. Energy Fuel 12:90–94CrossRef
46.
47.
go back to reference Pommer L, Ohman M, Boström D, Burvall J, Backman R, Olofsson I, Nordin A (2009) Mechanisms behind the positive effects on bed agglomeration and deposit formation combusting Forest residue with peat additives in fluidized beds. Energy Fuel 23:4245–4253. https://doi.org/10.1021/ef900146e CrossRef Pommer L, Ohman M, Boström D, Burvall J, Backman R, Olofsson I, Nordin A (2009) Mechanisms behind the positive effects on bed agglomeration and deposit formation combusting Forest residue with peat additives in fluidized beds. Energy Fuel 23:4245–4253. https://​doi.​org/​10.​1021/​ef900146e CrossRef
48.
go back to reference Skrifvars B-J, Öhman M, Nordin A, Hupa M (1999) Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers: a comparison of three different prediction methods. Energy Fuel 13:359–363CrossRef Skrifvars B-J, Öhman M, Nordin A, Hupa M (1999) Predicting bed agglomeration tendencies for biomass fuels fired in FBC boilers: a comparison of three different prediction methods. Energy Fuel 13:359–363CrossRef
49.
go back to reference Van der Drift A, Olsen A (1999) Conversion of biomass, prediction and solution methods for ash agglomeration and related problems. ECN-Rep Energy Res Cent Neth ECN-C--99-090 Van der Drift A, Olsen A (1999) Conversion of biomass, prediction and solution methods for ash agglomeration and related problems. ECN-Rep Energy Res Cent Neth ECN-C--99-090
51.
go back to reference Gatternig B, Karl J (2015) Prediction of ash-induced agglomeration in biomass-fired fluidized beds by an advanced regression-based approach. Fuel 161:157–167CrossRef Gatternig B, Karl J (2015) Prediction of ash-induced agglomeration in biomass-fired fluidized beds by an advanced regression-based approach. Fuel 161:157–167CrossRef
52.
go back to reference Mills K (2011) The estimation of slag properties. In: International Conference of Southern African Pyrometallurgy, Cradle of Humankind, South Africa Mills K (2011) The estimation of slag properties. In: International Conference of Southern African Pyrometallurgy, Cradle of Humankind, South Africa
55.
go back to reference Hanao M, Tanaka T, Kawamoto M, Takatani K (2007) Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int 47:935–939CrossRef Hanao M, Tanaka T, Kawamoto M, Takatani K (2007) Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int 47:935–939CrossRef
56.
go back to reference Tanaka T, Kitamura T, Back IA (2006) Evaluation of surface tension of molten ionic mixtures. ISIJ Int 46:400–406CrossRef Tanaka T, Kitamura T, Back IA (2006) Evaluation of surface tension of molten ionic mixtures. ISIJ Int 46:400–406CrossRef
57.
go back to reference Verein Deutscher Eisenhütten (1995) Slag Atlas, 2nd edn. Verlag Stahleisen GmbH, Düsseldorf Verein Deutscher Eisenhütten (1995) Slag Atlas, 2nd edn. Verlag Stahleisen GmbH, Düsseldorf
59.
go back to reference Grundy AN, Decterov SA, Pelton AD (2008) A model to calculate the viscosity of silicate melts part I: viscosity of binary SiO2-MeOx systems. Int J Mater Res 99:1185–1194CrossRef Grundy AN, Decterov SA, Pelton AD (2008) A model to calculate the viscosity of silicate melts part I: viscosity of binary SiO2-MeOx systems. Int J Mater Res 99:1185–1194CrossRef
60.
go back to reference Grundy AN, Jung I-H, Pelton AD, Decterov SA (2008) A model to calculate the viscosity of silicate melts part II: the NaO0. 5-MgO-CaO-AlO1. 5-SiO2 system. Int J Mater Res 99:1195–1209CrossRef Grundy AN, Jung I-H, Pelton AD, Decterov SA (2008) A model to calculate the viscosity of silicate melts part II: the NaO0. 5-MgO-CaO-AlO1. 5-SiO2 system. Int J Mater Res 99:1195–1209CrossRef
61.
go back to reference Nicholas G, Liu H, Jung I-H, A D, D P (2008) A model to calculate the viscosity of silicate melts Part I: Viscosity of binary SiO[2]-MeO[x] systems (M[e] = Na, K, Ca, Mg, Al). Hanser, Munich Nicholas G, Liu H, Jung I-H, A D, D P (2008) A model to calculate the viscosity of silicate melts Part I: Viscosity of binary SiO[2]-MeO[x] systems (M[e] = Na, K, Ca, Mg, Al). Hanser, Munich
63.
go back to reference Vargas S, Frandsen FJ, Dam-Johansen K (2001) Rheological properties of high-temperature melts of coal ashes and other silicates. Prog Energy Combust Sci 27:237–429CrossRef Vargas S, Frandsen FJ, Dam-Johansen K (2001) Rheological properties of high-temperature melts of coal ashes and other silicates. Prog Energy Combust Sci 27:237–429CrossRef
Metadata
Title
Application of chemical equilibrium calculations for the prediction of ash-induced agglomeration
Authors
Bernhard Gatternig
Jürgen Karl
Publication date
06-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 1/2019
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0325-7

Other articles of this Issue 1/2019

Biomass Conversion and Biorefinery 1/2019 Go to the issue