Skip to main content
Top

2019 | OriginalPaper | Chapter

8. Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry

Authors : Sevda Şenel, Eda Ayşe Aksoy, Gülçin Akca

Published in: Marine-Derived Biomaterials for Tissue Engineering Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chitosan is a marine polymer, which possesses numerous favorable properties including bioadhesivity, biodegradability and biocompatibility, which have enabled its use in drug delivery and tissue engineering. Furthermore, chitosan has been widely investigated in vitro and in vivo for its bioactive properties such as anti-inflammatory, antimicrobial, hemostatic, wound healing etc. This chapter will comprehensively detail the promising characteristics of chitosan as a biomaterial for drug delivery and tissue engineering, with regard to its safety, quality and efficacy, and review the recent advances on its applications in dentistry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dahlén G (2000) Bacterial infections of the oral mucosa. Periodontol 49:13–38CrossRef Dahlén G (2000) Bacterial infections of the oral mucosa. Periodontol 49:13–38CrossRef
2.
go back to reference Sankar V, Hearnden V, Hull K et al (2011) Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis 17(Suppl 1):73–84CrossRef Sankar V, Hearnden V, Hull K et al (2011) Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis 17(Suppl 1):73–84CrossRef
4.
go back to reference Aksungur P, Sungur A, Unal S et al (2004) Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release 98:269–279CrossRef Aksungur P, Sungur A, Unal S et al (2004) Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release 98:269–279CrossRef
5.
go back to reference Akincibay H, Senel S, Ay ZY (2007) Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Mater Res B Appl Biomater 80:290–296CrossRef Akincibay H, Senel S, Ay ZY (2007) Application of chitosan gel in the treatment of chronic periodontitis. J Biomed Mater Res B Appl Biomater 80:290–296CrossRef
6.
go back to reference Morales JO, McConville JT (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77:187–199CrossRef Morales JO, McConville JT (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77:187–199CrossRef
7.
go back to reference Boateng JS, Matthews KH, Auffret AD et al (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Dev Ind Pharm 38:47–54CrossRef Boateng JS, Matthews KH, Auffret AD et al (2012) Comparison of the in vitro release characteristics of mucosal freeze-dried wafers and solvent-cast films containing an insoluble drug. Drug Dev Ind Pharm 38:47–54CrossRef
9.
go back to reference Nguyen S, Hiorth M (2015) Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 6:595–608CrossRef Nguyen S, Hiorth M (2015) Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 6:595–608CrossRef
10.
go back to reference Rathbone M, Pather I, Şenel S (2015) Overview of oral mucosal delivery. In: Rathbone M, Senel S, Pather I (eds) Oral mucosal drug delivery and therapy. Advances in delivery science and technology. Springer, Boston, pp 17–29CrossRef Rathbone M, Pather I, Şenel S (2015) Overview of oral mucosal delivery. In: Rathbone M, Senel S, Pather I (eds) Oral mucosal drug delivery and therapy. Advances in delivery science and technology. Springer, Boston, pp 17–29CrossRef
11.
go back to reference Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503CrossRef Ozmeriç N, Ozcan G, Haytaç CM et al (2000) Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects. J Biomed Mater Res 51:500–503CrossRef
12.
go back to reference Moioli EK, Clark PA, Xin X et al (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59:308–324CrossRef Moioli EK, Clark PA, Xin X et al (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59:308–324CrossRef
13.
go back to reference Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef Boynueğri D, Ozcan G, Senel S et al (2009) Clinical and radiographic evaluations of chitosan gel in periodontal intraosseous defects: a pilot study. J Biomed Mater Res B Appl Biomater 90:461–466CrossRef
14.
go back to reference Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255CrossRef Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255CrossRef
15.
go back to reference Zhang L, Morsi Y, Wang Y et al (2013) Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev 49:14–26CrossRef Zhang L, Morsi Y, Wang Y et al (2013) Review scaffold design and stem cells for tooth regeneration. Jpn Dent Sci Rev 49:14–26CrossRef
17.
go back to reference Botelho J, Cavacas MA, Machado V et al (2017) Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 49:644–651CrossRef Botelho J, Cavacas MA, Machado V et al (2017) Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 49:644–651CrossRef
18.
go back to reference Murray PE (2012) Constructs and scaffolds employed to regenerate dental tissue. Dent Clin North Am 56:577–588CrossRef Murray PE (2012) Constructs and scaffolds employed to regenerate dental tissue. Dent Clin North Am 56:577–588CrossRef
19.
go back to reference Shimauchi H, Nemoto E, Ishihata H et al (2013) Possible functional scaffolds for periodontal regeneration. Jpn Dent Sci Rev 49:118–130CrossRef Shimauchi H, Nemoto E, Ishihata H et al (2013) Possible functional scaffolds for periodontal regeneration. Jpn Dent Sci Rev 49:118–130CrossRef
20.
go back to reference Abou Neel EA, Chrzanowski W, Salih VM et al (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRef Abou Neel EA, Chrzanowski W, Salih VM et al (2014) Tissue engineering in dentistry. J Dent 42:915–928CrossRef
21.
go back to reference Greenstein G, Polson A (1998) The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol 69:507–520CrossRef Greenstein G, Polson A (1998) The role of local drug delivery in the management of periodontal diseases: a comprehensive review. J Periodontol 69:507–520CrossRef
22.
go back to reference Soskolne WA, Heasman PA, Stabholz A et al (1997) Sustained local delivery of chlorhexidine in the treatment of periodontitis: a multi-center study. J Periodontol 68:32–38CrossRef Soskolne WA, Heasman PA, Stabholz A et al (1997) Sustained local delivery of chlorhexidine in the treatment of periodontitis: a multi-center study. J Periodontol 68:32–38CrossRef
23.
go back to reference Sander L, Frandsen EV, Arnbjerg D et al (1994) Effect of local metronidazole application on periodontal healing following guided tissue regeneration. Clinical findings. J Periodontol 65:914–920CrossRef Sander L, Frandsen EV, Arnbjerg D et al (1994) Effect of local metronidazole application on periodontal healing following guided tissue regeneration. Clinical findings. J Periodontol 65:914–920CrossRef
24.
go back to reference Graça MA, Watts TL, Wilson RF et al (1997) A randomized controlled trial of a 2% minocycline gel as an adjunct to non-surgical periodontal treatment, using a design with multiple matching criteria. J Clin Periodontol 24:249–253CrossRef Graça MA, Watts TL, Wilson RF et al (1997) A randomized controlled trial of a 2% minocycline gel as an adjunct to non-surgical periodontal treatment, using a design with multiple matching criteria. J Clin Periodontol 24:249–253CrossRef
25.
go back to reference Polson AM, Garrett S, Stoller NH et al (1997) Multi-center comparative evaluation of subgingivally delivered sanguinarine and doxycycline in the treatment of periodontitis. II. Clinical results. J Periodontol 68:119–126CrossRef Polson AM, Garrett S, Stoller NH et al (1997) Multi-center comparative evaluation of subgingivally delivered sanguinarine and doxycycline in the treatment of periodontitis. II. Clinical results. J Periodontol 68:119–126CrossRef
26.
go back to reference Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRef Silva TH, Alves A, Popa EG et al (2012) Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2:278–289CrossRef
27.
go back to reference Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584CrossRef Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584CrossRef
28.
go back to reference Şenel S (2015) Functionalisation of marine materials for drug delivery systems. In: Kim SK (ed) Functional marine polymers. Woodhead Publishing, Cambridge, pp 109–121 Şenel S (2015) Functionalisation of marine materials for drug delivery systems. In: Kim SK (ed) Functional marine polymers. Woodhead Publishing, Cambridge, pp 109–121
30.
go back to reference Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104B:1415–1421CrossRef Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104B:1415–1421CrossRef
31.
go back to reference Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRef Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRef
32.
go back to reference Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRef Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRef
33.
go back to reference Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653CrossRef Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653CrossRef
34.
go back to reference Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11CrossRef Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11CrossRef
35.
go back to reference Halim AS, Keong LC, Zainol I et al (2012) Biocompatibility and biodegradation of chitosan and derivatives. In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, New Jersey, pp 57–73CrossRef Halim AS, Keong LC, Zainol I et al (2012) Biocompatibility and biodegradation of chitosan and derivatives. In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, New Jersey, pp 57–73CrossRef
36.
go back to reference Sashiwa H (2014) Chemical aspects of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives: advances in drug discovery and developments. CRC Press, Florida, pp 93–111 Sashiwa H (2014) Chemical aspects of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives: advances in drug discovery and developments. CRC Press, Florida, pp 93–111
37.
go back to reference Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A Chem Phys 53:583–612CrossRef Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym Sci Ser A Chem Phys 53:583–612CrossRef
40.
go back to reference Şenel S, Kas HS, Squier CA (2000) Application of chitosan in dental drug delivery and therapy. In: Muzzarelli RAA (ed) Chitosan per os: from dietary supplement to drug carrier. Grottammare, Atec, pp 241–256 Şenel S, Kas HS, Squier CA (2000) Application of chitosan in dental drug delivery and therapy. In: Muzzarelli RAA (ed) Chitosan per os: from dietary supplement to drug carrier. Grottammare, Atec, pp 241–256
41.
go back to reference Şenel S (2010) Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol 20:23–32CrossRef Şenel S (2010) Potential applications of chitosan in oral mucosal delivery. J Drug Deliv Sci Technol 20:23–32CrossRef
42.
go back to reference Zheng LY, Zhu JAF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530CrossRef Zheng LY, Zhu JAF (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530CrossRef
43.
go back to reference Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174CrossRef
44.
go back to reference Akca G, Özdemir A, Öner ZG et al (2018) Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res Chem Intermed 44:4811–4825CrossRef Akca G, Özdemir A, Öner ZG et al (2018) Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res Chem Intermed 44:4811–4825CrossRef
45.
go back to reference Tayel AA, Moussa S, Opwis K et al (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14CrossRef Tayel AA, Moussa S, Opwis K et al (2010) Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol 47:10–14CrossRef
46.
go back to reference Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283CrossRef Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283CrossRef
47.
go back to reference Tarsi R, Corbin B, Pruzzo C et al (1998) Effect of low-molecular-weight chitosans on the adhesive properties of oral streptococci. Oral Microbiol Immunol 13:217–224CrossRef Tarsi R, Corbin B, Pruzzo C et al (1998) Effect of low-molecular-weight chitosans on the adhesive properties of oral streptococci. Oral Microbiol Immunol 13:217–224CrossRef
48.
go back to reference Hayashi Y, Ohara N, Ganno T et al (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294CrossRef Hayashi Y, Ohara N, Ganno T et al (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294CrossRef
49.
go back to reference Verkaik MJ, Busscher HJ, Jager D et al (2011) Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent 39:218–224CrossRef Verkaik MJ, Busscher HJ, Jager D et al (2011) Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent 39:218–224CrossRef
50.
go back to reference Chen CY, Chung YC (2012) Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J Appl Oral Sci 20:620–627CrossRef Chen CY, Chung YC (2012) Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J Appl Oral Sci 20:620–627CrossRef
51.
go back to reference Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef Samprasit W, Kaomongkolgit R, Sukma M et al (2015) Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydr Polym 117:933–940CrossRef
52.
go back to reference Ikinci G, Senel S, Akincibay H et al (2002) Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 235:121–127CrossRef Ikinci G, Senel S, Akincibay H et al (2002) Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 235:121–127CrossRef
53.
go back to reference Rossi S, Sandri G, Ferrari F et al (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm Dev Technol 8:199–208CrossRef Rossi S, Sandri G, Ferrari F et al (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm Dev Technol 8:199–208CrossRef
54.
go back to reference Azeran NSB, Zazali NDB, Timur SS et al (2017) Moxifloxacin loaded chitosan gel formulations for the treatment of periodontal diseases. J Polym Mater 34:157–169 Azeran NSB, Zazali NDB, Timur SS et al (2017) Moxifloxacin loaded chitosan gel formulations for the treatment of periodontal diseases. J Polym Mater 34:157–169
55.
go back to reference Atac MA, Şenel S, Eren A et al (2005) Application of chitosan films in sulcoplasty operations. In: Struszczyk H (ed) Advances in chitin science, vol IV. Proceedings of the 6th International Conference of the European Chitin Society, Poznań, pp 270–274 Atac MA, Şenel S, Eren A et al (2005) Application of chitosan films in sulcoplasty operations. In: Struszczyk H (ed) Advances in chitin science, vol IV. Proceedings of the 6th International Conference of the European Chitin Society, Poznań, pp 270–274
56.
go back to reference Kim NR, Lee DH, Chung PH et al (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e94–100CrossRef Kim NR, Lee DH, Chung PH et al (2009) Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:e94–100CrossRef
57.
go back to reference Colombo JS, Moore AN, Hartgerink JD et al (2014) Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 40:S6–S12CrossRef Colombo JS, Moore AN, Hartgerink JD et al (2014) Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod 40:S6–S12CrossRef
58.
go back to reference Galler KM, Eidt A, Schmalz G (2014) Cell-free approaches for dental pulp tissue engineering. J Endod 40:S41–S45CrossRef Galler KM, Eidt A, Schmalz G (2014) Cell-free approaches for dental pulp tissue engineering. J Endod 40:S41–S45CrossRef
59.
go back to reference O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRef O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14:88–95CrossRef
60.
go back to reference Ahmed S, Annu Ali A et al (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862CrossRef Ahmed S, Annu Ali A et al (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862CrossRef
62.
go back to reference Kim IY, Seo SJ, Moon HS et al (2007) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRef Kim IY, Seo SJ, Moon HS et al (2007) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRef
63.
go back to reference Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRef
64.
go back to reference Xu Y, Xia D, Han J et al (2017) Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr Polym 177:210–216CrossRef Xu Y, Xia D, Han J et al (2017) Design and fabrication of porous chitosan scaffolds with tunable structures and mechanical properties. Carbohydr Polym 177:210–216CrossRef
65.
go back to reference Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C Mater Biol Appl 32:1711–1726CrossRef Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C Mater Biol Appl 32:1711–1726CrossRef
66.
go back to reference Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRef Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRef
69.
go back to reference Timur SS, Yüksel S, Akca G et al (2018) Mucoadhesive films and wafers for treatment of infections in the oral cavity. Int J Pharm. (accepted) Timur SS, Yüksel S, Akca G et al (2018) Mucoadhesive films and wafers for treatment of infections in the oral cavity. Int J Pharm. (accepted)
70.
go back to reference Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials, revised and expanded. CRC Press, Florida, pp 187–212 Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. In: Dumitriu S (ed) Polymeric biomaterials, revised and expanded. CRC Press, Florida, pp 187–212
71.
go back to reference Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493CrossRef Ding F, Deng H, Du Y et al (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6:9477–9493CrossRef
72.
go back to reference Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRef Ahsan SM, Thomas M, Reddy KK et al (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRef
74.
go back to reference United States Pharmacopeia (USP) (2018) United States Pharmacopeia 41—National Formulary 36 United States Pharmacopeia (USP) (2018) United States Pharmacopeia 41—National Formulary 36
75.
go back to reference Yuan Y, Chesnutt BM, Haggard WO et al (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416CrossRef Yuan Y, Chesnutt BM, Haggard WO et al (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416CrossRef
76.
go back to reference Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268CrossRef Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268CrossRef
77.
go back to reference Fakhry A, Schneider GB, Zaharias R et al (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079CrossRef Fakhry A, Schneider GB, Zaharias R et al (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079CrossRef
78.
go back to reference Hamilton V, Yuan YL, Rigney DA et al (2007) Bone cell attachment and growth on well-characterized chitosan films. Polym Int 56:641–647CrossRef Hamilton V, Yuan YL, Rigney DA et al (2007) Bone cell attachment and growth on well-characterized chitosan films. Polym Int 56:641–647CrossRef
79.
go back to reference Kinane DF, Berglundh T, Lindhe J (2012) Pathogenesis of periodontitis. In: Lindhe J, Lang NP, Karring T (eds) Clinical periodontology and implant dentistry, 5th edn. Wiley-Blackwell, New Jersey, pp 285–306 Kinane DF, Berglundh T, Lindhe J (2012) Pathogenesis of periodontitis. In: Lindhe J, Lang NP, Karring T (eds) Clinical periodontology and implant dentistry, 5th edn. Wiley-Blackwell, New Jersey, pp 285–306
80.
go back to reference Yen AH, Yelick PC (2011) Dental tissue regeneration—a mini-review. Gerontology 57:85–94CrossRef Yen AH, Yelick PC (2011) Dental tissue regeneration—a mini-review. Gerontology 57:85–94CrossRef
81.
go back to reference Amrollahi P, Shah B, Seifi A et al (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C Mater Biol Appl 69:1383–1390CrossRef Amrollahi P, Shah B, Seifi A et al (2016) Recent advancements in regenerative dentistry: a review. Mater Sci Eng C Mater Biol Appl 69:1383–1390CrossRef
82.
go back to reference Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T et al (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:2041731417752766CrossRef Leyendecker Junior A, Gomes Pinheiro CC, Lazzaretti Fernandes T et al (2018) The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng 9:2041731417752766CrossRef
83.
go back to reference Arancibia R, Maturana C, Silva D et al (2013) Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 92:740–745CrossRef Arancibia R, Maturana C, Silva D et al (2013) Effects of chitosan particles in periodontal pathogens and gingival fibroblasts. J Dent Res 92:740–745CrossRef
84.
go back to reference Ji Q, Deng J, Yu X et al (2013) Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr Polym 92:824–829CrossRef Ji Q, Deng J, Yu X et al (2013) Modulation of pro-inflammatory mediators in LPS-stimulated human periodontal ligament cells by chitosan and quaternized chitosan. Carbohydr Polym 92:824–829CrossRef
85.
go back to reference Zang S, Dong G, Peng B et al (2014) A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym 113:240–248CrossRef Zang S, Dong G, Peng B et al (2014) A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr Polym 113:240–248CrossRef
86.
go back to reference Hurt AP, Kotha AK, Trivedi V et al (2015) Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration. Polimeros 25:311–316CrossRef Hurt AP, Kotha AK, Trivedi V et al (2015) Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration. Polimeros 25:311–316CrossRef
87.
go back to reference Bansal M, Mittal N, Yadav SK et al (2018) Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 8:126–133CrossRef Bansal M, Mittal N, Yadav SK et al (2018) Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 8:126–133CrossRef
88.
go back to reference Gjoseva S, Geskovski N, Sazdovska SD et al (2018) Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 186:260–272CrossRef Gjoseva S, Geskovski N, Sazdovska SD et al (2018) Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydr Polym 186:260–272CrossRef
89.
go back to reference Özdoğan AI, İlarslan YD, Kösemehmetoğlu K et al (2018) In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm 550:470–476CrossRef Özdoğan AI, İlarslan YD, Kösemehmetoğlu K et al (2018) In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm 550:470–476CrossRef
90.
go back to reference Gottlow J, Nyman S, Karring T et al (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503CrossRef Gottlow J, Nyman S, Karring T et al (1984) New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 11:494–503CrossRef
91.
go back to reference Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 54:73–92CrossRef Villar CC, Cochran DL (2010) Regeneration of periodontal tissues: guided tissue regeneration. Dent Clin North Am 54:73–92CrossRef
92.
go back to reference The American Academy of Periodontology (2001) Glossary of periodontal terms, 4th edn The American Academy of Periodontology (2001) Glossary of periodontal terms, 4th edn
93.
go back to reference Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:19–25 Dahlin C, Sennerby L, Lekholm U et al (1989) Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants 4:19–25
95.
go back to reference Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720CrossRef Matsunaga T, Yanagiguchi K, Yamada S et al (2006) Chitosan monomer promotes tissue regeneration on dental pulp wounds. J Biomed Mater Res A 76:711–720CrossRef
96.
go back to reference Zhang Y, Wang Y, Shi B et al (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522CrossRef Zhang Y, Wang Y, Shi B et al (2007) A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering. Biomaterials 28:1515–1522CrossRef
97.
go back to reference Budiraharjo R, Neoh KG, Kang ET et al (2010) Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. Int Endod J 43:930–939CrossRef Budiraharjo R, Neoh KG, Kang ET et al (2010) Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. Int Endod J 43:930–939CrossRef
98.
go back to reference Coimbra P, Alves P, Valente TA et al (2011) Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. Int J Biol Macromol 49:573–579CrossRef Coimbra P, Alves P, Valente TA et al (2011) Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization. Int J Biol Macromol 49:573–579CrossRef
99.
go back to reference Horst OV, Chavez MG, Jheon AH et al (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 56:495–520CrossRef Horst OV, Chavez MG, Jheon AH et al (2012) Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 56:495–520CrossRef
101.
go back to reference Covarrubias C, Cádiz M, Maureira M et al (2018) Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 32:1155–1163CrossRef Covarrubias C, Cádiz M, Maureira M et al (2018) Bionanocomposite scaffolds based on chitosan-gelatin and nanodimensional bioactive glass particles: in vitro properties and in vivo bone regeneration. J Biomater Appl 32:1155–1163CrossRef
102.
go back to reference Soares DG, Anovazzi G, Bordini EAF et al (2018) Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration. J Endod 44:971–976.e1CrossRef Soares DG, Anovazzi G, Bordini EAF et al (2018) Biological analysis of simvastatin-releasing chitosan scaffold as a cell-free system for pulp-dentin regeneration. J Endod 44:971–976.e1CrossRef
103.
go back to reference Varoni EM, Vijayakumar S, Canciani E et al (2018) Chitosan-based trilayer scaffold for multitissue periodontal regeneration. J Dent Res 97:303–311CrossRef Varoni EM, Vijayakumar S, Canciani E et al (2018) Chitosan-based trilayer scaffold for multitissue periodontal regeneration. J Dent Res 97:303–311CrossRef
104.
go back to reference Zeeshan R, Mutahir Z, Iqbal H et al (2018) Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym 193:9–18CrossRef Zeeshan R, Mutahir Z, Iqbal H et al (2018) Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym 193:9–18CrossRef
105.
go back to reference Duruel T, Çakmak AS, Akman A et al (2017) Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. Int J Biol Macromol 104A:232–241CrossRef Duruel T, Çakmak AS, Akman A et al (2017) Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. Int J Biol Macromol 104A:232–241CrossRef
106.
go back to reference Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G et al (2017) Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 69:617–630CrossRef Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G et al (2017) Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 69:617–630CrossRef
107.
go back to reference Soares DG, Rosseto HL, Scheffel DS et al (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21:2827–2839CrossRef Soares DG, Rosseto HL, Scheffel DS et al (2017) Odontogenic differentiation potential of human dental pulp cells cultured on a calcium-aluminate enriched chitosan-collagen scaffold. Clin Oral Investig 21:2827–2839CrossRef
108.
go back to reference Miranda DG, Malmonge SM, Campos DM et al (2016) A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 104:1691–1702CrossRef Miranda DG, Malmonge SM, Campos DM et al (2016) A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 104:1691–1702CrossRef
109.
go back to reference Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411CrossRef Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411CrossRef
110.
go back to reference Jiang W, Li L, Zhang D et al (2015) Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 25:240–252CrossRef Jiang W, Li L, Zhang D et al (2015) Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater 25:240–252CrossRef
111.
go back to reference Nivedhitha Sundaram M, Sowmya S, Deepthi S et al (2016) Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater 104:761–770CrossRef Nivedhitha Sundaram M, Sowmya S, Deepthi S et al (2016) Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J Biomed Mater Res B Appl Biomater 104:761–770CrossRef
112.
go back to reference Hashemi-Beni B, Khoroushi M, Foroughi MR et al (2018) Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dent Res J 15:136–145CrossRef Hashemi-Beni B, Khoroushi M, Foroughi MR et al (2018) Cytotoxicity assessment of polyhydroxybutyrate/chitosan/nano- bioglass nanofiber scaffolds by stem cells from human exfoliated deciduous teeth stem cells from dental pulp of exfoliated deciduous tooth. Dent Res J 15:136–145CrossRef
113.
go back to reference Lee D, Lee SJ, Moon JH et al (2018) Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem 66:196–202CrossRef Lee D, Lee SJ, Moon JH et al (2018) Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications. J Ind Eng Chem 66:196–202CrossRef
114.
go back to reference Su H, Liu KY, Karydis A et al (2016) In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomed Mater 12:015003CrossRef Su H, Liu KY, Karydis A et al (2016) In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomed Mater 12:015003CrossRef
115.
go back to reference Lotfi G, Shokrgozar MA, Mofid R et al (2016) Biological evaluation (in vitro and in vivo) of bilayered collagenous coated (nano electrospun and solid wall) chitosan membrane for periodontal guided bone regeneration. Ann Biomed Eng 44:2132–2144CrossRef Lotfi G, Shokrgozar MA, Mofid R et al (2016) Biological evaluation (in vitro and in vivo) of bilayered collagenous coated (nano electrospun and solid wall) chitosan membrane for periodontal guided bone regeneration. Ann Biomed Eng 44:2132–2144CrossRef
116.
go back to reference Farooq A, Yar M, Khan AS et al (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 56:104–113CrossRef Farooq A, Yar M, Khan AS et al (2015) Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Mater Sci Eng C Mater Biol Appl 56:104–113CrossRef
118.
go back to reference Park SJ, Li Z, Hwang IN et al (2013) Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 39:1001–1007CrossRef Park SJ, Li Z, Hwang IN et al (2013) Glycol chitin-based thermoresponsive hydrogel scaffold supplemented with enamel matrix derivative promotes odontogenic differentiation of human dental pulp cells. J Endod 39:1001–1007CrossRef
119.
go back to reference Amir LR, Suniarti DF, Utami S et al (2014) Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res 358:407–415CrossRef Amir LR, Suniarti DF, Utami S et al (2014) Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res 358:407–415CrossRef
Metadata
Title
Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry
Authors
Sevda Şenel
Eda Ayşe Aksoy
Gülçin Akca
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8855-2_8

Premium Partners