Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Application of Computing Hydrodynamic Forces and Moments on a Vessel Without Bernoulli’s Equation

Authors : Arthur M. Reed, John G. Telste

Published in: Contemporary Ideas on Ship Stability

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traditionally the hydrodynamic force on a ship’s hull is obtained by integrating the pressure over the hull, using Bernoulli’s equation to compute the pressures. Due the need to evaluate \(\varPhi _t\), \(\varPhi _x\), \(\varPhi _y\), \(\varPhi _z\) at every instant in time, this becomes a computational challenge when one wishes to know the hydrodynamic forces (and moments) on the instantaneous wetted surface of a vessel in extreme seas. A methodology that converts the integration of the pressure over the hull surface into an impulse, the time derivative of several integrals of the velocity potential over the surface of the vessel and possibly the free surface near the vessel is introduced. Some examples of applying the impulsive theory to 2- and 3-dimensional bodies are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
As the free-surface boundary condition is not used in the development of the momentum theory for the force, the specific free-surface boundary condition chosen is not important.
 
2
In the plots that follow, the UMBest results are labeled “Current Method”.
 
Literature
go back to reference Bandyk, P. J. (2009) A Body-Exact Strip Theory Approach to Ship Motion Computations. Ph.D. Dissertation, Univ. Mich., Ann Arbor, MI, xii+122 p. Bandyk, P. J. (2009) A Body-Exact Strip Theory Approach to Ship Motion Computations. Ph.D. Dissertation, Univ. Mich., Ann Arbor, MI, xii+122 p.
go back to reference Belknap W. and J. Telste (2008) Identification o fLeading Order Nonlinearities from Numerical Forced Motion Experiment Results. Proc. 27thSymp. NavalHydro., Seoul, Korea, 18 p. Belknap W. and J. Telste (2008) Identification o fLeading Order Nonlinearities from Numerical Forced Motion Experiment Results. Proc. 27thSymp. NavalHydro., Seoul, Korea, 18 p.
go back to reference Newman, J.N. (1977) MarineHydrodynamics. MIT Press, xiii + 402 p., Cambridge, MA. Newman, J.N. (1977) MarineHydrodynamics. MIT Press, xiii + 402 p., Cambridge, MA.
go back to reference Newman, J. N. & T. Y. Wu (1973) A Generalized Slender-Body Theory for Fish-Like Forms. J. Fluid Mech., 57(4):673–693.CrossRef Newman, J. N. & T. Y. Wu (1973) A Generalized Slender-Body Theory for Fish-Like Forms. J. Fluid Mech., 57(4):673–693.CrossRef
go back to reference O’Dea, J. F., E. J. Powers and J. Zselecsky (1992) Experimental Determination of Nonlinearities in Vertical Plane Ship Motions. Proc. 19th Symp. Naval Hydro., Seoul, Korea, pp. 73–91. O’Dea, J. F., E. J. Powers and J. Zselecsky (1992) Experimental Determination of Nonlinearities in Vertical Plane Ship Motions. Proc. 19th Symp. Naval Hydro., Seoul, Korea, pp. 73–91.
go back to reference Ogilvie, T. F. and E. O. Tuck (1969) A rational strip theory of ship motions: Part I. Dept. of Nav. Arch. and Marine Eng., College of Eng., Univ. Michigan, Report No. 013, ix+92 p. Ogilvie, T. F. and E. O. Tuck (1969) A rational strip theory of ship motions: Part I. Dept. of Nav. Arch. and Marine Eng., College of Eng., Univ. Michigan, Report No. 013, ix+92 p.
go back to reference Reed, A.M. and J.G.Telste (2011) Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation. Proc. 12th Int’l Ship Stability Workshop, Washington, D.C., pp. 341–51. Reed, A.M. and J.G.Telste (2011) Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation. Proc. 12th Int’l Ship Stability Workshop, Washington, D.C., pp. 341–51.
go back to reference Reed, A.M. (2012) Application of Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation.Proc. 11th International Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece pp. 853–63. Reed, A.M. (2012) Application of Computing Hydrodynamic Forces and Moments on a Vessel without Bernoulli’s Equation.Proc. 11th International Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece pp. 853–63.
go back to reference Salvesen, N., E. O. Tuck & O. Faltinsen (1970) Ship motions and sea loads. Trans. SNAME, 78:250–87. Salvesen, N., E. O. Tuck & O. Faltinsen (1970) Ship motions and sea loads. Trans. SNAME, 78:250–87.
go back to reference Sclavounos, P. D. and S. Lee (2012) A Fluid Impulse Nonlinear Theory of Ship Motions and Sea Loads. Proc. 29th Symp. Naval Hydro., Gothenburg, Sweden, 14 p. Sclavounos, P. D. and S. Lee (2012) A Fluid Impulse Nonlinear Theory of Ship Motions and Sea Loads. Proc. 29th Symp. Naval Hydro., Gothenburg, Sweden, 14 p.
go back to reference Sclavounos, P.D., J.G.Telste and A.M.Reed (2019) Modeling of Nonlinear Vessel Responses in Steep Random Waves. Carderock Division, Naval Surface Warfare Center Report (to be published). Sclavounos, P.D., J.G.Telste and A.M.Reed (2019) Modeling of Nonlinear Vessel Responses in Steep Random Waves. Carderock Division, Naval Surface Warfare Center Report (to be published).
go back to reference Serrin, J. (1959) Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, Vol. VIII/Fluid Dynamics I, pp. 125–263, Springer-Verlag, Berlin. Serrin, J. (1959) Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, Vol. VIII/Fluid Dynamics I, pp. 125–263, Springer-Verlag, Berlin.
go back to reference Smirnov, V. I. (1964) A Course of Higher Mathematics, Vol. II: Advanced Calculus. Pergamon Press, 630 p., Oxford. Smirnov, V. I. (1964) A Course of Higher Mathematics, Vol. II: Advanced Calculus. Pergamon Press, 630 p., Oxford.
go back to reference Telste, J.G. and W.F. Belknap (2008) Potential Flow Forces and Moments from Selected Ship Flow Codes in a Set of Numerical Experiments. Carderock Division, Naval Surface Warfare Center Report NSWCCD-50-TR-2008/040,15,240p. Telste, J.G. and W.F. Belknap (2008) Potential Flow Forces and Moments from Selected Ship Flow Codes in a Set of Numerical Experiments. Carderock Division, Naval Surface Warfare Center Report NSWCCD-50-TR-2008/040,15,240p.
go back to reference Vugts, J. H. (1968) The hydrodynamic coefficients for swaying, heaving and rolling cylinders in a free surface, Int’l Shipbuilding Prog., 15(167):251–76.CrossRef Vugts, J. H. (1968) The hydrodynamic coefficients for swaying, heaving and rolling cylinders in a free surface, Int’l Shipbuilding Prog., 15(167):251–76.CrossRef
go back to reference Watanabe, I., M. Ueno, H. Sawada (1989) Effects of Bow Flare Shape to the Wave Loads of a container ship. J. Society Naval Architects of Japan, 166:259–66.CrossRef Watanabe, I., M. Ueno, H. Sawada (1989) Effects of Bow Flare Shape to the Wave Loads of a container ship. J. Society Naval Architects of Japan, 166:259–66.CrossRef
Metadata
Title
Application of Computing Hydrodynamic Forces and Moments on a Vessel Without Bernoulli’s Equation
Authors
Arthur M. Reed
John G. Telste
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-00516-0_4