Skip to main content
Top
Published in: New Generation Computing 2/2023

11-05-2023

Application of Convolutional Neural Networks for COVID-19 Detection in X-ray Images Using InceptionV3 and U-Net

Authors: Aman Gupta, Shashank Mishra, Sourav Chandan Sahu, Ulligaddala Srinivasarao, K. Jairam Naik

Published in: New Generation Computing | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

COVID-19 has expanded overall across the globe after its initial cases were discovered in December 2019 in Wuhan—China. Because the virus has impacted people's health worldwide, its fast identification is essential for preventing disease spread and reducing mortality rates. The reverse transcription polymerase chain reaction (RT-PCR) is the primary leading method for detecting COVID-19 disease; it has high costs and long turnaround times. Hence, quick and easy-to-use innovative diagnostic instruments are required. According to a new study, COVID-19 is linked to discoveries in chest X-ray pictures. The suggested approach includes a stage of pre-processing with lung segmentation, removing the surroundings that do not provide information pertinent to the task and may result in biased results. The InceptionV3 and U-Net deep learning models used in this work process the X-ray photo and classifies them as COVID-19 negative or positive. The CNN model that uses a transfer learning approach was trained. Finally, the findings are analyzed and interpreted through different examples. The obtained COVID-19 detection accuracy is around 99% for the best models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, W.: Imaging changes of severe COVID-19 pneumonia in advanced stage. Intensive Care Med. 46(5), 841–843 (2020)CrossRef Zhang, W.: Imaging changes of severe COVID-19 pneumonia in advanced stage. Intensive Care Med. 46(5), 841–843 (2020)CrossRef
2.
go back to reference Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D., Shen, J., Zhang, H., Liu, H., Xia, H., Tang, J., Zhang, K., Gong, S.: Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 26(4), 502–505 (2020)CrossRef Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D., Shen, J., Zhang, H., Liu, H., Xia, H., Tang, J., Zhang, K., Gong, S.: Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 26(4), 502–505 (2020)CrossRef
6.
go back to reference Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., Xia, L.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2), E32–E40 (2020)CrossRef Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., Xia, L.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296(2), E32–E40 (2020)CrossRef
7.
go back to reference Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. RSNA 78(May), 1–15 (2020) Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. RSNA 78(May), 1–15 (2020)
8.
go back to reference Kong, W., Agarwal, P. P. Chest imaging appearance of COVID-19 infection. Radiology: Cardiothoracic Imaging, 2(1), Article e200028. (2020) Kong, W., Agarwal, P. P. Chest imaging appearance of COVID-19 infection. Radiology: Cardiothoracic Imaging, 2(1), Article e200028. (2020)
9.
go back to reference De Informática, I. T. . Early detection in chest images informe de ‘‘in search for bias within the dataset’’. ITI. (2020) De Informática, I. T. . Early detection in chest images informe de ‘‘in search for bias within the dataset’’. ITI. (2020)
11.
go back to reference L. Wang, A. Wong, COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. arXiv preprint arXiv:2003.09871. 2020 L. Wang, A. Wong, COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. arXiv preprint arXiv:​2003.​09871. 2020
12.
go back to reference Civit-Masot, J., Luna-Perejón, F., Morales, M. D., Civit, A. . Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Applied Sciences (Switzerland), 10 (13). (2020) Civit-Masot, J., Luna-Perejón, F., Morales, M. D., Civit, A. . Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images. Applied Sciences (Switzerland), 10 (13). (2020)
13.
go back to reference Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., Rajendra Acharya, U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, Article 103792. (2020) Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., Rajendra Acharya, U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine, 121, Article 103792. (2020)
14.
go back to reference Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from Xray images utilizing transfer learning with convolutional neural networks. Phys Eng Scie Med 43(2), 635–640 (2020)CrossRef Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from Xray images utilizing transfer learning with convolutional neural networks. Phys Eng Scie Med 43(2), 635–640 (2020)CrossRef
15.
go back to reference Jain, G., Mittal, D., Thakur, D., Mittal, M.K.: A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybernetics Biomed Eng 40(4), 1391–1405 (2020)CrossRef Jain, G., Mittal, D., Thakur, D., Mittal, M.K.: A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybernetics Biomed Eng 40(4), 1391–1405 (2020)CrossRef
16.
go back to reference Khan, A. I., Shah, J. L., Bhat, M. M.:CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, Article 105581. (2020) Khan, A. I., Shah, J. L., Bhat, M. M.:CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Computer Methods and Programs in Biomedicine, 196, Article 105581. (2020)
17.
go back to reference Nasiri, Hamid, Hasani, Sharif: Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost. (2021) Nasiri, Hamid, Hasani, Sharif: Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost. (2021)
18.
go back to reference A. Narin, C. Kaya and Z. Pamuk, “Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks’, Pattern Anal. Appl., pp. 1–14, 2021. A. Narin, C. Kaya and Z. Pamuk, “Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks’, Pattern Anal. Appl., pp. 1–14, 2021.
24.
go back to reference T. Anjum, T. E. Chowdhury, S. Sakib and S. Kibria, “Performance Analysis of Convolutional Neural Network Architectures for the Identification of COVID-19 from Chest X-ray Images,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 2022, https://doi.org/10.1109/CCWC54503.2022.9720862. T. Anjum, T. E. Chowdhury, S. Sakib and S. Kibria, “Performance Analysis of Convolutional Neural Network Architectures for the Identification of COVID-19 from Chest X-ray Images,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 2022, https://​doi.​org/​10.​1109/​CCWC54503.​2022.​9720862.
25.
go back to reference Vayá, M. d. l. I., Saborit, J. M., Montell, J. A., Pertusa, A., Bustos, A., Cazorla, M., Galant, J., Barber, X., Orozco-Beltrán, D., García-García, F., Caparrós, M., González, G., Salinas, J. M: BIMCV Covid-19+: a large annotated dataset of RX and CT images from COVID-19 patients. (pp. 1–22). ArXiv, arXiv:2006.01174. (2020) Vayá, M. d. l. I., Saborit, J. M., Montell, J. A., Pertusa, A., Bustos, A., Cazorla, M., Galant, J., Barber, X., Orozco-Beltrán, D., García-García, F., Caparrós, M., González, G., Salinas, J. M: BIMCV Covid-19+: a large annotated dataset of RX and CT images from COVID-19 patients. (pp. 1–22). ArXiv, arXiv:2006.01174. (2020)
26.
go back to reference Medical Imaging Databank of the Valencia region BIMCV (2020). BIMCV-Covid19 – BIMCV. bimcv.cipf.es/bimcv-projects/bimcv-covid19/1590859488150-48be708-c3f3 (Visited: 20/04/2022). Medical Imaging Databank of the Valencia region BIMCV (2020). BIMCV-Covid19 – BIMCV. bimcv.cipf.es/bimcv-projects/bimcv-covid19/1590859488150-48be708-c3f3 (Visited: 20/04/2022).
27.
go back to reference Daniel Kermany, A. S., Goldbaum, M., Cai, W., Anthony Lewis, M., Xia, H., Zhang Correspondence, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172. Daniel Kermany, A. S., Goldbaum, M., Cai, W., Anthony Lewis, M., Xia, H., Zhang Correspondence, K. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172.
29.
go back to reference Bustos, A., Pertusa, A., Salinas, J. M., & de la Iglesia-Vayá, M.. PadChest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis, 66, Article 101797. (2020) Bustos, A., Pertusa, A., Salinas, J. M., & de la Iglesia-Vayá, M.. PadChest: A large chest x-ray image dataset with multi-label annotated reports. Medical Image Analysis, 66, Article 101797. (2020)
30.
go back to reference Jaeger, S., Candemir, S., Antani, S., Wáng, Y.-X.J., Lu, P.-X., Thoma, G.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475–477 (2020) Jaeger, S., Candemir, S., Antani, S., Wáng, Y.-X.J., Lu, P.-X., Thoma, G.: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 4(6), 475–477 (2020)
31.
go back to reference Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.I., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2020)CrossRef Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.I., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2020)CrossRef
32.
go back to reference Tang, Y. B., Tang, Y. X., Xiao, J., Summers, R. M. . Xlsor: A robust and accurate lung segmentor on chest x-rays using criss-cross attention and customized radiorealistic abnormalities generation. (pp. 457–467). ArXiv. (2020) Tang, Y. B., Tang, Y. X., Xiao, J., Summers, R. M. . Xlsor: A robust and accurate lung segmentor on chest x-rays using criss-cross attention and customized radiorealistic abnormalities generation. (pp. 457–467). ArXiv. (2020)
33.
34.
go back to reference Simonyan, K., &Zisserman, A. (2020). Very deep convolutional networks for large-scale image recognition. in: 3rd International Conference on Learning Representations, ICLR 2015 - Conference track proceedings arXiv:1409.1556v6. Simonyan, K., &Zisserman, A. (2020). Very deep convolutional networks for large-scale image recognition. in: 3rd International Conference on Learning Representations, ICLR 2015 - Conference track proceedings arXiv:​1409.​1556v6.
35.
go back to reference Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2020). ImageNet: A large-scale hierarchical image database. CVPR09, 20 (11). Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2020). ImageNet: A large-scale hierarchical image database. CVPR09, 20 (11).
36.
go back to reference Bravo Ortíz, M.A., Arteaga Arteaga, H.B., Tabares Soto, R., Padilla Buriticá, J.I., Orozco-Arias, S.: Cervical cancer classification using convolutional neural networks, transfer learning and data augmentation. Revista EIA 18(35), 1–12 (2021) Bravo Ortíz, M.A., Arteaga Arteaga, H.B., Tabares Soto, R., Padilla Buriticá, J.I., Orozco-Arias, S.: Cervical cancer classification using convolutional neural networks, transfer learning and data augmentation. Revista EIA 18(35), 1–12 (2021)
38.
go back to reference Arias-Garzón, D., Alzate-Grisales, J. A., Orozco-Arias, S., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Mora-Rubio, A., Tabares-Soto, R: COVID-19 detection in X-ray images using convolutional neural networks. Machine Learning with Applications, 6, 100138. (2021). Arias-Garzón, D., Alzate-Grisales, J. A., Orozco-Arias, S., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Mora-Rubio, A., Tabares-Soto, R: COVID-19 detection in X-ray images using convolutional neural networks. Machine Learning with Applications, 6, 100138. (2021).
39.
go back to reference Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021)CrossRef Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021)CrossRef
40.
go back to reference Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons Fractals 142, 110495 (2021)MathSciNetCrossRef Hussain, E., Hasan, M., Rahman, M.A., Lee, I., Tamanna, T., Parvez, M.Z.: CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images. Chaos, Solitons Fractals 142, 110495 (2021)MathSciNetCrossRef
41.
go back to reference Malla, S., Alphonse, P. J. A. An improved machine learning technique for identify informative COVID-19 tweets. International Journal of System Assurance Engineering and Management, 1–12. (2022) Malla, S., Alphonse, P. J. A. An improved machine learning technique for identify informative COVID-19 tweets. International Journal of System Assurance Engineering and Management, 1–12. (2022)
42.
go back to reference Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., Miozzo, G., Menotti, D.: Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res Biomed Eng 38(1), 149–162 (2022)CrossRef Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., Miozzo, G., Menotti, D.: Towards an effective and efficient deep learning model for COVID-19 patterns detection in X-ray images. Res Biomed Eng 38(1), 149–162 (2022)CrossRef
43.
go back to reference Verma, S.S., Prasad, A., Kumar, A.: CovXmlc: High performance COVID-19 detection on X-ray images using Multi-Model classification. Biomed. Signal Process. Control 71, 103272 (2022)CrossRef Verma, S.S., Prasad, A., Kumar, A.: CovXmlc: High performance COVID-19 detection on X-ray images using Multi-Model classification. Biomed. Signal Process. Control 71, 103272 (2022)CrossRef
44.
go back to reference Gour, M., Jain, S.: Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybernetics Biomed Eng 42(1), 27–41 (2022)CrossRef Gour, M., Jain, S.: Automated COVID-19 detection from X-ray and CT images with stacked ensemble convolutional neural network. Biocybernetics Biomed Eng 42(1), 27–41 (2022)CrossRef
45.
go back to reference Mousavi, Z., Shahini, N., Sheykhivand, S., Mojtahedi, S., Arshadi, A.: COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS Technol 27(1), 63–75 (2022)CrossRef Mousavi, Z., Shahini, N., Sheykhivand, S., Mojtahedi, S., Arshadi, A.: COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS Technol 27(1), 63–75 (2022)CrossRef
46.
go back to reference Agrawal, T., Choudhary, P.: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images. Evol. Syst. 13(4), 519–533 (2022)CrossRef Agrawal, T., Choudhary, P.: FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images. Evol. Syst. 13(4), 519–533 (2022)CrossRef
47.
go back to reference Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. B. A., Chowdhury, M. E: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in biology and medicine (2021) Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. B. A., Chowdhury, M. E: Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in biology and medicine (2021)
50.
go back to reference K Jairam Naik, Mounish Pedagandham, Amrita Mishra:“Workflow Scheduling Optimization for Distributed Environment using Artificial Neural Networks and Reinforcement Learning (WfSo_ANRL)”, International Journal of Computational Science and Engineering (IJCSE) (2021) K Jairam Naik, Mounish Pedagandham, Amrita Mishra:“Workflow Scheduling Optimization for Distributed Environment using Artificial Neural Networks and Reinforcement Learning (WfSo_ANRL)”, International Journal of Computational Science and Engineering (IJCSE) (2021)
Metadata
Title
Application of Convolutional Neural Networks for COVID-19 Detection in X-ray Images Using InceptionV3 and U-Net
Authors
Aman Gupta
Shashank Mishra
Sourav Chandan Sahu
Ulligaddala Srinivasarao
K. Jairam Naik
Publication date
11-05-2023
Publisher
Springer Japan
Published in
New Generation Computing / Issue 2/2023
Print ISSN: 0288-3635
Electronic ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-023-00217-2

Other articles of this Issue 2/2023

New Generation Computing 2/2023 Go to the issue

Premium Partner