Skip to main content
Top

2024 | OriginalPaper | Chapter

Application of Discrete Wavelet Transform and Tree-Based Ensemble Machine Learning for Modeling of Particulate Matter Concentrations

Authors : Maya Stoimenova-Minova, Snezhana Gocheva-Ilieva, Atanas Ivanov

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The study of air pollution is an extremely important and urgent problem to be solved on a global and local scale. In this field, huge arrays of measurement data are accumulating, for the analysis of which various approaches based on mathematical, statistical, and machine learning (ML) methods are developed. In this paper, we investigate the application of different discrete wavelet transforms (DWT) families, coupled with state-of-the-art ML algorithms to predict concentrations of particulate matter PM10. Average daily data for this pollutant and several meteorological time series for a period of 630 days were used. A hybrid type models with wavelet decomposition of the initial time series and the application of predictive ensembles (Arcing, Arc-x4) were obtained. All models are cross-validated. The models are applied for short-term pollution forecasts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hamanaka, R.B., Mutlu, G.M.: Particulate matter air pollution: effects on the cardiovascular system. Front. Endocrinol. 9, art. no 680 (2018) Hamanaka, R.B., Mutlu, G.M.: Particulate matter air pollution: effects on the cardiovascular system. Front. Endocrinol. 9, art. no 680 (2018)
2.
go back to reference Davidson, C.I., Phalen, R.F., Solomon, P.A.: Airborne particulate matter and human health: a review. Aerosol Sci. Technol. 39(8), 737–749 (2005)CrossRef Davidson, C.I., Phalen, R.F., Solomon, P.A.: Airborne particulate matter and human health: a review. Aerosol Sci. Technol. 39(8), 737–749 (2005)CrossRef
3.
go back to reference Ibrahim, M.F., Hod, R., Tajudin, M.A.B.A., Mahiyuddin, W.R.W., Nawi, A.M., Sahani, M.: Children’s exposure to air pollution in a natural gas industrial area and their risk of hospital admission for respiratory diseases. Environ. Res. 210, 112966 (2022)CrossRef Ibrahim, M.F., Hod, R., Tajudin, M.A.B.A., Mahiyuddin, W.R.W., Nawi, A.M., Sahani, M.: Children’s exposure to air pollution in a natural gas industrial area and their risk of hospital admission for respiratory diseases. Environ. Res. 210, 112966 (2022)CrossRef
4.
go back to reference Shahrbaf, M.A., Akbarzadeh, M.A., Tabary, M., Khaheshi, I.: Air pollution and cardiac arrhythmias: a comprehensive review. Curr. Probl. Cardiol. 46(3), 100649 (2021)CrossRef Shahrbaf, M.A., Akbarzadeh, M.A., Tabary, M., Khaheshi, I.: Air pollution and cardiac arrhythmias: a comprehensive review. Curr. Probl. Cardiol. 46(3), 100649 (2021)CrossRef
5.
go back to reference AlOmar, M.K., Hameed, M.M., AlSaadi, M.A.: Multi hours ahead prediction of surface ozone gas concentration: robust artificial intelligence approach. Atmos. Pollut. Res. 11(9), 1572–1587 (2020)CrossRef AlOmar, M.K., Hameed, M.M., AlSaadi, M.A.: Multi hours ahead prediction of surface ozone gas concentration: robust artificial intelligence approach. Atmos. Pollut. Res. 11(9), 1572–1587 (2020)CrossRef
6.
go back to reference Kisi, O.: Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour. Manag. 25, 579–600 (2011)CrossRef Kisi, O.: Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour. Manag. 25, 579–600 (2011)CrossRef
7.
go back to reference Mandrikova, O., Fetisova, N., Polozov, Y.: Hybrid model for time series of complex structure with ARIMA components. Mathematics 9, 1122 (2021)CrossRef Mandrikova, O., Fetisova, N., Polozov, Y.: Hybrid model for time series of complex structure with ARIMA components. Mathematics 9, 1122 (2021)CrossRef
8.
go back to reference Aladağ, E.: Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment. Urban Climate 39, 100930 (2021)CrossRef Aladağ, E.: Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment. Urban Climate 39, 100930 (2021)CrossRef
9.
go back to reference Box, G.E.P., Jenkins, G.M., Reinsel, G.S.: Time Series Analysis, Forecasting and Control, 3rd edn. Prentice-Hall, Englewood Cliffs (1994) Box, G.E.P., Jenkins, G.M., Reinsel, G.S.: Time Series Analysis, Forecasting and Control, 3rd edn. Prentice-Hall, Englewood Cliffs (1994)
10.
go back to reference Siwek, K., Osowski, S.: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng. Appl. Artif. Intell. 25(6), 1246–1258 (2012)CrossRef Siwek, K., Osowski, S.: Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng. Appl. Artif. Intell. 25(6), 1246–1258 (2012)CrossRef
11.
go back to reference Zeri, M., Carvalho, V.S.B., Cunha-Zeri, G., Oliveira-Júnior, J.F., Lyra, G.B., Freitas, E.D.D.: Assessment of the variability of pollutants concentration over the metropolitan area of São Paulo, Brazil, using the wavelet transform. Atmos. Sci. Lett. 17(1), 87–95 (2016)CrossRef Zeri, M., Carvalho, V.S.B., Cunha-Zeri, G., Oliveira-Júnior, J.F., Lyra, G.B., Freitas, E.D.D.: Assessment of the variability of pollutants concentration over the metropolitan area of São Paulo, Brazil, using the wavelet transform. Atmos. Sci. Lett. 17(1), 87–95 (2016)CrossRef
12.
go back to reference Galvão, S.L.J., Matos, J.C.O., Kitagawa, Y.K.L., Conterato, F.S., Moreira, D.M., Kumar, P., Nascimento, E.G.S.: Particulate matter forecasting using different deep neural network topologies and wavelets for feature augmentation. Atmosphere 13(9), 1451 (2022)CrossRef Galvão, S.L.J., Matos, J.C.O., Kitagawa, Y.K.L., Conterato, F.S., Moreira, D.M., Kumar, P., Nascimento, E.G.S.: Particulate matter forecasting using different deep neural network topologies and wavelets for feature augmentation. Atmosphere 13(9), 1451 (2022)CrossRef
13.
go back to reference Bai, Y., Li, Y., Wang, X., Xie, J., Li, C.: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7(3), 557–566 (2016)CrossRef Bai, Y., Li, Y., Wang, X., Xie, J., Li, C.: Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7(3), 557–566 (2016)CrossRef
14.
go back to reference Ebrahimi-Khusfi, Z., Taghizadeh-Mehrjardi, R., Kazemi, M., Nafarzadegan, A.R.: Predicting the ground-level pollutants concentrations and identifying the influencing factors using machine learning, wavelet transformation, and remote sensing techniques. Atmos. Pollut. Res. 12(5), 101064 (2021)CrossRef Ebrahimi-Khusfi, Z., Taghizadeh-Mehrjardi, R., Kazemi, M., Nafarzadegan, A.R.: Predicting the ground-level pollutants concentrations and identifying the influencing factors using machine learning, wavelet transformation, and remote sensing techniques. Atmos. Pollut. Res. 12(5), 101064 (2021)CrossRef
15.
go back to reference Liu, B., Yu, X., Chen, J., Wang, Q.: Air pollution concentration forecasting based on wavelet transform and combined weighting forecasting model. Atmos. Pollut. Res. 12(8), 101144 (2021)CrossRef Liu, B., Yu, X., Chen, J., Wang, Q.: Air pollution concentration forecasting based on wavelet transform and combined weighting forecasting model. Atmos. Pollut. Res. 12(8), 101144 (2021)CrossRef
20.
go back to reference Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, L 152/1 (2008) Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Union, L 152/1 (2008)
21.
go back to reference Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)CrossRef
22.
go back to reference Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetCrossRef Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)MathSciNetCrossRef
23.
go back to reference Burrus, T.V., Burrus, C., Narasimhan, K., Guo, Y., Li, C.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice Hall, Upper Saddle River (1998) Burrus, T.V., Burrus, C., Narasimhan, K., Guo, Y., Li, C.: Introduction to Wavelets and Wavelet Transforms: A Primer. Prentice Hall, Upper Saddle River (1998)
24.
go back to reference Walden, A.T., Percival, D.B.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000) Walden, A.T., Percival, D.B.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)
25.
go back to reference Schlüter, S., Deuschle, C.: Using wavelets for time series forecasting: does it pay off?. IWQW Discussion Papers 4, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics (IWQW) (2010) Schlüter, S., Deuschle, C.: Using wavelets for time series forecasting: does it pay off?. IWQW Discussion Papers 4, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics (IWQW) (2010)
26.
go back to reference Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth Advanced Books and Software, Belmont (1984) Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth Advanced Books and Software, Belmont (1984)
27.
go back to reference Tsvetanova, I., Zheleva, I., Filipova, M., Stefanova, A.: Statistical analysis of ambient air PM10 contamination during winter periods for Ruse region, Bulgaria. In: MATEC Web of Conferences, EDP Sciences, vol. 145, art. 01007 (2018) Tsvetanova, I., Zheleva, I., Filipova, M., Stefanova, A.: Statistical analysis of ambient air PM10 contamination during winter periods for Ruse region, Bulgaria. In: MATEC Web of Conferences, EDP Sciences, vol. 145, art. 01007 (2018)
28.
go back to reference Veleva, E., Zheleva, I.: Statistical modeling of particle mater air pollutants in the city of Ruse, Bulgaria. In: MATEC Web of Conferences, EDP Sciences, vol. 145, art. 01010 (2018) Veleva, E., Zheleva, I.: Statistical modeling of particle mater air pollutants in the city of Ruse, Bulgaria. In: MATEC Web of Conferences, EDP Sciences, vol. 145, art. 01010 (2018)
29.
go back to reference Veleva, E., Georgiev I.R.: Seasonality of the levels of particulate matter PM10 air pollutant in the city of Ruse, Bulgaria. In: AIP Conference Proceedings, vol. 2302, art. 030006 (2020) Veleva, E., Georgiev I.R.: Seasonality of the levels of particulate matter PM10 air pollutant in the city of Ruse, Bulgaria. In: AIP Conference Proceedings, vol. 2302, art. 030006 (2020)
Metadata
Title
Application of Discrete Wavelet Transform and Tree-Based Ensemble Machine Learning for Modeling of Particulate Matter Concentrations
Authors
Maya Stoimenova-Minova
Snezhana Gocheva-Ilieva
Atanas Ivanov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_12

Premium Partners