Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

Application of Function Points and Data Mining Techniques for Software Estimation - A Combined Approach

Authors: Przemysław Pospieszny, Beata Czarnacka-Chrobot, Andrzej Kobyliński

Published in: Software Measurement

Publisher: Springer International Publishing

share
SHARE

Abstract

Project estimation is recognized as one of the most challenging processes in software project management on which project success is dependable. Traditional estimation methods based on expert knowledge and analogy tend to be error prone and deliver overoptimistic assessments. Methods derived from function points are good sizing tools but do not reflect organizations’ specific project management culture. Due to those deficiencies in recent years data mining techniques are explored as an alternative estimation method. The aim of this paper is to present a combined approach of functional sizing measurement and three data mining techniques for effort and duration estimation at project early stages: generalized linear models, artificial neural networks and CHAID decision trees. The estimation accuracy of these models is compared in order to determine their potential usefulness for deployment within organizations. Moreover a merged approach of combining algorithms’ results is proposed in order to increase prediction accuracy and overcome possibility of overfitting occurrence.
Literature
1.
go back to reference Project Management Institute: A Guide to the Project Management Body of Knowledge - PMBOK Guide. Project Management Institute (2013) Project Management Institute: A Guide to the Project Management Body of Knowledge - PMBOK Guide. Project Management Institute (2013)
2.
go back to reference Marchewka, J.: Information Technology Project Managment - Providing Measurable Organizational Value. Wiley, Hoboken (2003) Marchewka, J.: Information Technology Project Managment - Providing Measurable Organizational Value. Wiley, Hoboken (2003)
3.
go back to reference Standish Group: The CHAOS Manifesto 2011. Standish Gr. Int. EUA. 25 (2011) Standish Group: The CHAOS Manifesto 2011. Standish Gr. Int. EUA. 25 (2011)
4.
go back to reference Czarnacka-Chrobot, B.: Analysis of the functional size measurement methods usage by polish business software systems providers. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 17–34. Springer, Heidelberg (2009) CrossRef Czarnacka-Chrobot, B.: Analysis of the functional size measurement methods usage by polish business software systems providers. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 17–34. Springer, Heidelberg (2009) CrossRef
5.
go back to reference Neimat, T.: Al: Why IT projects fail. Proj. perfect white Pap. Collect., pp. 1–8 (2005) Neimat, T.: Al: Why IT projects fail. Proj. perfect white Pap. Collect., pp. 1–8 (2005)
6.
go back to reference Tan, S.: How to Increase Your IT Project Success Rate. Gart. Res. Rep. (2011) Tan, S.: How to Increase Your IT Project Success Rate. Gart. Res. Rep. (2011)
7.
go back to reference Mieritz, L.: Survey Shows Why Projects Fail (2012) Mieritz, L.: Survey Shows Why Projects Fail (2012)
8.
go back to reference Galorath, D., Evans, M.: Software Sizing, Estimation, and Risk Management. Auerbach Publications, Boca Raton (2006) CrossRefMATH Galorath, D., Evans, M.: Software Sizing, Estimation, and Risk Management. Auerbach Publications, Boca Raton (2006) CrossRefMATH
9.
go back to reference Wells, G.: Why projects fail. Manag. Sci. J. (2001) Wells, G.: Why projects fail. Manag. Sci. J. (2001)
10.
go back to reference International Software Benchmarking Standards Group: ISBSG Repository Data Release 12 - Field Descriptions (2013) International Software Benchmarking Standards Group: ISBSG Repository Data Release 12 - Field Descriptions (2013)
11.
go back to reference Schwalbe, K.: Information Technology Project Management. Course Technology, Boston (2014) Schwalbe, K.: Information Technology Project Management. Course Technology, Boston (2014)
12.
go back to reference Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981). 10, 4–21 MATH Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981). 10, 4–21 MATH
13.
go back to reference Laird, L.M., Brennan, M.C.: Software Measurement and Estimation: A Practical Approach. Wiley, Hoboken (2006) CrossRef Laird, L.M., Brennan, M.C.: Software Measurement and Estimation: A Practical Approach. Wiley, Hoboken (2006) CrossRef
14.
go back to reference Albrecht, A.: Measuring application development productivity. In: IBO Conference on Application Development, pp. 83–92 (1979) Albrecht, A.: Measuring application development productivity. In: IBO Conference on Application Development, pp. 83–92 (1979)
15.
go back to reference Czarnacka-Chrobot, B.: Standardization of software size measurement. In: Tkacz, E., Kapczynski, A. (eds.) Internet – Technical Development and Applications. AISC, vol. 64, pp. 149–156. Springer, Heidelberg (2009) CrossRef Czarnacka-Chrobot, B.: Standardization of software size measurement. In: Tkacz, E., Kapczynski, A. (eds.) Internet – Technical Development and Applications. AISC, vol. 64, pp. 149–156. Springer, Heidelberg (2009) CrossRef
16.
go back to reference Hill, P.: Practical Software Project Estimation: a Toolkit for Estimating Software Development Effort & Duration. McGraw Hill Professional, New York (2010) Hill, P.: Practical Software Project Estimation: a Toolkit for Estimating Software Development Effort & Duration. McGraw Hill Professional, New York (2010)
17.
go back to reference Gasik, S.: A model of project knowledge management. Proj. Manag. J. 42, 23–44 (2011) CrossRef Gasik, S.: A model of project knowledge management. Proj. Manag. J. 42, 23–44 (2011) CrossRef
18.
go back to reference Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases (1991) Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases (1991)
19.
go back to reference Linoff, G.S., Berry, M.J.A.: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley, New York (2011) Linoff, G.S., Berry, M.J.A.: Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. Wiley, New York (2011)
20.
go back to reference International Society of Parametric Analysts: Parametric Estimating Handbook. ISPA (2008) International Society of Parametric Analysts: Parametric Estimating Handbook. ISPA (2008)
21.
go back to reference Iranmanesh, S.H., Mokhtari, Z.: Application of data mining tools to predicate completion time of a project. Proc. World Acad. Sci. Eng. Technol. 32, 234–240 (2008) Iranmanesh, S.H., Mokhtari, Z.: Application of data mining tools to predicate completion time of a project. Proc. World Acad. Sci. Eng. Technol. 32, 234–240 (2008)
22.
go back to reference Azzeh, M., Cowling, P.I., Neagu, D.: Software stage-effort estimation based on association rule mining and Fuzzy set theory. In: Proceedings - 10th IEEE International Conference on Computer and Information Technology, CIT-2010, 7th IEEE International Conference on Embedded Software and Systems, ICESS-2010, ScalCom-2010, pp. 249–256 (2010) Azzeh, M., Cowling, P.I., Neagu, D.: Software stage-effort estimation based on association rule mining and Fuzzy set theory. In: Proceedings - 10th IEEE International Conference on Computer and Information Technology, CIT-2010, 7th IEEE International Conference on Embedded Software and Systems, ICESS-2010, ScalCom-2010, pp. 249–256 (2010)
23.
go back to reference Balsera, J.V., Montequin, V.R., Fernandez, F.O., González-Fanjul, C.A.: Data Mining Applied to the Improvement of Project Management. InTech. (2012) Balsera, J.V., Montequin, V.R., Fernandez, F.O., González-Fanjul, C.A.: Data Mining Applied to the Improvement of Project Management. InTech. (2012)
24.
go back to reference Nagwani, N.K., Bhansali, A.: A data mining model to predict software bug complexity using bug estimation and clustering. In: ITC 2010 - 2010 International Conference on Recent Trends in Information, Telecommunication, and Computing, pp. 13–17 (2010) Nagwani, N.K., Bhansali, A.: A data mining model to predict software bug complexity using bug estimation and clustering. In: ITC 2010 - 2010 International Conference on Recent Trends in Information, Telecommunication, and Computing, pp. 13–17 (2010)
25.
go back to reference Shukla, R., Shukla, M., Misra, A.K., Marwala, T., Clarke, W.A.: Dynamic software maintenance effort estimation modeling using neural network, rule engine and multi-regression approach. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 157–169. Springer, Heidelberg (2012) CrossRef Shukla, R., Shukla, M., Misra, A.K., Marwala, T., Clarke, W.A.: Dynamic software maintenance effort estimation modeling using neural network, rule engine and multi-regression approach. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 157–169. Springer, Heidelberg (2012) CrossRef
26.
go back to reference Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation studies. IEEE Trans. Softw. Eng. 33, 33–53 (2007) CrossRef Jorgensen, M., Shepperd, M.: A systematic review of software development cost estimation studies. IEEE Trans. Softw. Eng. 33, 33–53 (2007) CrossRef
27.
go back to reference Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning based software development effort estimation models. Inf. Softw. Technol. 54, 41–59 (2012) CrossRef Wen, J., Li, S., Lin, Z., Hu, Y., Huang, C.: Systematic literature review of machine learning based software development effort estimation models. Inf. Softw. Technol. 54, 41–59 (2012) CrossRef
28.
go back to reference Kobyliński, A., Pospieszny, P.: Zastosowanie technik eksploracji danych do estymacji pracochłonności projektów informatycznych. Studia i Materiały Polskiego Stowarzyszenia Zarządzania Wiedzą, pp. 67–82, Bydgoszcz (2015) Kobyliński, A., Pospieszny, P.: Zastosowanie technik eksploracji danych do estymacji pracochłonności projektów informatycznych. Studia i Materiały Polskiego Stowarzyszenia Zarządzania Wiedzą, pp. 67–82, Bydgoszcz (2015)
29.
go back to reference Dzega, D., Pietruszkiewicz, W.: Classification and metaclassification in large scale data mining application for estimation of software projects. In: 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS 2010 (2010) Dzega, D., Pietruszkiewicz, W.: Classification and metaclassification in large scale data mining application for estimation of software projects. In: 2010 IEEE 9th International Conference on Cybernetic Intelligent Systems, CIS 2010 (2010)
30.
go back to reference Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software effort estimation: A comparative study. IEEE Trans. Softw. Eng. 38, 375–397 (2012) CrossRef Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software effort estimation: A comparative study. IEEE Trans. Softw. Eng. 38, 375–397 (2012) CrossRef
31.
go back to reference Brewer, J., Dittman, K.: Methods of IT Project Management. Prentice Hal, New York (2009) Brewer, J., Dittman, K.: Methods of IT Project Management. Prentice Hal, New York (2009)
32.
go back to reference Ruchika Malhotra, A.J.: Software effort prediction using statistical and machine learning methods. Int. J. Adv. Comput. Sci. Appl. 2, 145–152 (2011) Ruchika Malhotra, A.J.: Software effort prediction using statistical and machine learning methods. Int. J. Adv. Comput. Sci. Appl. 2, 145–152 (2011)
33.
go back to reference Pai, D.R., McFall, K.S., Subramanian, G.H.: Software effort estimation using a neural network ensemble. J. Comput. Inf. Syst. 53, 49–58 (2013) Pai, D.R., McFall, K.S., Subramanian, G.H.: Software effort estimation using a neural network ensemble. J. Comput. Inf. Syst. 53, 49–58 (2013)
34.
go back to reference Lopez-Martin, C., Isaza, C., Chavoya, A.: Software development effort prediction of industrial projects applying a general regression neural network. Empir. Softw. Eng. 17, 738–756 (2012) CrossRef Lopez-Martin, C., Isaza, C., Chavoya, A.: Software development effort prediction of industrial projects applying a general regression neural network. Empir. Softw. Eng. 17, 738–756 (2012) CrossRef
35.
go back to reference Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans. Softw. Eng. 39, 537–551 (2013) CrossRef Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans. Softw. Eng. 39, 537–551 (2013) CrossRef
36.
go back to reference Kocaguneli, E., Menzies, T., Keung, J.W.: On the value of ensemble effort estimation. IEEE Trans. Softw. Eng. 38, 1403–1416 (2012) CrossRef Kocaguneli, E., Menzies, T., Keung, J.W.: On the value of ensemble effort estimation. IEEE Trans. Softw. Eng. 38, 1403–1416 (2012) CrossRef
37.
go back to reference Reifer, D.J., Boehm, B.W., Chulani, S.: The Rosetta stone: Making COCOMO 81 Files Work With COCOMO II. Univ. South Calif. 1–10 (1998) Reifer, D.J., Boehm, B.W., Chulani, S.: The Rosetta stone: Making COCOMO 81 Files Work With COCOMO II. Univ. South Calif. 1–10 (1998)
40.
go back to reference Albrecht, A.J., Gaffney, J.E.J.: Software function, source lines of code, and development effort prediction: a software science validation. IEEE Trans. Softw. Eng. SE-9, 639–648 (1983) CrossRef Albrecht, A.J., Gaffney, J.E.J.: Software function, source lines of code, and development effort prediction: a software science validation. IEEE Trans. Softw. Eng. SE-9, 639–648 (1983) CrossRef
42.
go back to reference Villanueva-Balsera, J., Ortega-Fernandez, F., Rodríguez-Montequín, V., Concepción-Suárez, R.: Effort estimation in information systems projects using data mining techniques. In: Proceedings of the 13th WSEAS International Conference on Computers - Held as part of the 13th WSEAS CSCC Multiconference, pp. 652–657 (2009) Villanueva-Balsera, J., Ortega-Fernandez, F., Rodríguez-Montequín, V., Concepción-Suárez, R.: Effort estimation in information systems projects using data mining techniques. In: Proceedings of the 13th WSEAS International Conference on Computers - Held as part of the 13th WSEAS CSCC Multiconference, pp. 652–657 (2009)
43.
go back to reference Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., Wirth, R.: CRISP-DM 1.0 (2000) Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., Wirth, R.: CRISP-DM 1.0 (2000)
44.
go back to reference Giudici, P., Figini, S.: Applied Data Mining for Business and Industry. Wiley, New York (2009) CrossRefMATH Giudici, P., Figini, S.: Applied Data Mining for Business and Industry. Wiley, New York (2009) CrossRefMATH
45.
go back to reference Larose, D.T.: Data Mining Methods and Models. Wiley, New York (2007) MATH Larose, D.T.: Data Mining Methods and Models. Wiley, New York (2007) MATH
46.
go back to reference Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D.J., Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall PTR, Upper Saddle River (2000) Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Reifer, D.J., Steece, B.: Software Cost Estimation with Cocomo II. Prentice Hall PTR, Upper Saddle River (2000)
47.
go back to reference Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006) MATH Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2006) MATH
48.
go back to reference Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin/Cummings Pub. Co., Menlo Park (1986) Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin/Cummings Pub. Co., Menlo Park (1986)
49.
go back to reference Jorgensen, M.: A critique of how we measure and interpret the accuracy of software development effort estimation. In: 1st International Workshop on Software Productivity Analysis and Cost Estimation. ss. 15–22 (2007) Jorgensen, M.: A critique of how we measure and interpret the accuracy of software development effort estimation. In: 1st International Workshop on Software Productivity Analysis and Cost Estimation. ss. 15–22 (2007)
Metadata
Title
Application of Function Points and Data Mining Techniques for Software Estimation - A Combined Approach
Authors
Przemysław Pospieszny
Beata Czarnacka-Chrobot
Andrzej Kobyliński
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-24285-9_7

Premium Partner