Skip to main content
Top

2025 | OriginalPaper | Chapter

Application of Machine Learning in Prediction of Load Settlement Behavior of Piles Based on CPT Data

Authors : Mansi Aggarwal, Ashok K. Gupta

Published in: Proceedings of the Indian Geotechnical Conference 2022 Volume 10

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine Learning can be successfully utilized in geotechnical designing applications, where vulnerability is a portion of nature, to create a vigorous predictive model foundation for designing parameters/behaviors. Formerly, geotechnical plan parameters were not continuously straightforwardly measured from a research facility and in-situ tests or maybe frequently assessed from observational or numerical relationships that are created from regression fitting to a dataset. ML models were created to train a nearby dataset. The developing volume of data databases presents openings for progressed information examination methods from machine learning inquiries. Applied applications of ML are exceptionally distinctive from hypothetical or observational studies. The feasible applications of ML were examined and created a proposition for a seven-step preparation that can direct viable applications of ML in design. In this work, an ML model was developed to predict pile behaviors based on a cone penetration test (CPT). The ML model was used to develop approximately 500 data sets from the available literature. The ML model beats the conventional techniques when the predictions made by ML are compared to those provided by several conventional approaches in the study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124 Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15:101–124
2.
go back to reference Ghorbani B, Sadrossadat E, Bazaz JB, Oskooei PR (2018) Numerical ANFIS-based formulation for prediction of the ultimate axial load bearing capacity of piles through CPT data. Geotech Geol Eng 36:2057–2076 Ghorbani B, Sadrossadat E, Bazaz JB, Oskooei PR (2018) Numerical ANFIS-based formulation for prediction of the ultimate axial load bearing capacity of piles through CPT data. Geotech Geol Eng 36:2057–2076
3.
go back to reference Borner K (1995) Modules for design support. Technical report FABEL-report No. 35. GMD, Sankt Augustin, Germany Borner K (1995) Modules for design support. Technical report FABEL-report No. 35. GMD, Sankt Augustin, Germany
4.
go back to reference Kordjazi A, Nejad FP, Jaska MB (2014) Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55:91–102 Kordjazi A, Nejad FP, Jaska MB (2014) Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 55:91–102
5.
go back to reference Debnath P, Dey AK (2018) Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression. Int J Geomech 15(1–15):04017147 Debnath P, Dey AK (2018) Prediction of bearing capacity of geogrid-reinforced stone columns using support vector regression. Int J Geomech 15(1–15):04017147
6.
go back to reference Nath ND, Chaspari T, Behzadan AH (2018) Automated ergonomic risk monitoring using body-mounted sensors and machine learning. Adv Eng Inf 38:514–526 Nath ND, Chaspari T, Behzadan AH (2018) Automated ergonomic risk monitoring using body-mounted sensors and machine learning. Adv Eng Inf 38:514–526
7.
go back to reference Fan C, Xiao F, Zhao Y (2017) A short-term building cooling load prediction method using deep learning algorithms. Appl Energy 195:222–223 Fan C, Xiao F, Zhao Y (2017) A short-term building cooling load prediction method using deep learning algorithms. Appl Energy 195:222–223
8.
go back to reference Li M, Shen Y, Ren Q (2019) A new distributed time series evolution prediction model for dam deformation based on constituent elements. Adv Eng Inf 39:41–52 Li M, Shen Y, Ren Q (2019) A new distributed time series evolution prediction model for dam deformation based on constituent elements. Adv Eng Inf 39:41–52
9.
go back to reference Shahin MA (2014) Load-settlement modelling of axially loaded steel driven piles using CPT-based recurrent neural networks. Soils Found 54:515–522 Shahin MA (2014) Load-settlement modelling of axially loaded steel driven piles using CPT-based recurrent neural networks. Soils Found 54:515–522
10.
go back to reference Shahin MA, Maier HR, Jaska MB (2002) Predicting settlements of shallow foundations using artificial neural networks. J Geotech Geoenviron Eng 128:785–793 Shahin MA, Maier HR, Jaska MB (2002) Predicting settlements of shallow foundations using artificial neural networks. J Geotech Geoenviron Eng 128:785–793
Metadata
Title
Application of Machine Learning in Prediction of Load Settlement Behavior of Piles Based on CPT Data
Authors
Mansi Aggarwal
Ashok K. Gupta
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6172-2_9