Skip to main content
Top
Published in: Knowledge and Information Systems 1/2015

01-10-2015 | Regular Paper

Application of smoothing techniques for linear programming twin support vector machines

Author: M. Tanveer

Published in: Knowledge and Information Systems | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new unconstrained minimization problem formulation is proposed for linear programming twin support vector machine (TWSVM) classifiers. The proposed formulation leads to two smaller-sized unconstrained minimization problems having their objective functions piecewise differentiable. However, since their objective functions contain the non-smooth “plus” function, two new smoothing approaches are assumed to solve the proposed formulation, and then apply Newton-Armijo algorithm. The idea of our formulation is to reformulate TWSVM as a strongly convex problem by incorporated regularization techniques and then derive smooth 1-norm linear programming formulation for TWSVM to improve robustness. One significant advantage of our proposed algorithm over TWSVM is that the structural risk minimization principle is implemented in the primal problems which embodies the marrow of statistical learning theory. In addition, the solution of two modified unconstrained minimization problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems in TWSVM and TBSVM, which leads to extremely simple and fast algorithm. Our approach has the advantage that a pair of matrix equation of order equals to the number of input examples is solved at each iteration of the algorithm. The algorithm converges from any starting point that can be easily implemented in MATLAB without using any optimization packages. The performance of our proposed method is verified experimentally on several benchmark and synthetic datasets. Experimental results show the effectiveness of our methods in both training time and classification accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Balasundaram S, Tanveer M (2013) On Lagrangian twin support vector regression. Neural Comput Appl 22(1):257–267CrossRef Balasundaram S, Tanveer M (2013) On Lagrangian twin support vector regression. Neural Comput Appl 22(1):257–267CrossRef
2.
go back to reference Balasundaram S, Tanveer M (2013) Smooth Newton method for implicit Lagrangian twin support vector regression. Int J Knowl Based Intell Eng Syst 17(4):267–278 Balasundaram S, Tanveer M (2013) Smooth Newton method for implicit Lagrangian twin support vector regression. Int J Knowl Based Intell Eng Syst 17(4):267–278
3.
go back to reference Bradley PS, Mangasarian OL (1998) Feature selection via concave minimization and support vector machines. In: Machine learning proceedings of the fifteenth international conference (ICML ’98), pp 82–90 Bradley PS, Mangasarian OL (1998) Feature selection via concave minimization and support vector machines. In: Machine learning proceedings of the fifteenth international conference (ICML ’98), pp 82–90
4.
go back to reference Brown MPS, Grundy WN, Lin D (2000) Knowledge-based analysis of microarray gene expression data using support vector machine. Proc Natl Acad Sci USA 97(1):262–267CrossRef Brown MPS, Grundy WN, Lin D (2000) Knowledge-based analysis of microarray gene expression data using support vector machine. Proc Natl Acad Sci USA 97(1):262–267CrossRef
5.
go back to reference Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:1–43CrossRef Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:1–43CrossRef
6.
go back to reference Chen C, Mangasarian OL (1995) Smoothing methods for convex inequalities and linear complementarity problems. Math Program 71(1):51–69MATHMathSciNetCrossRef Chen C, Mangasarian OL (1995) Smoothing methods for convex inequalities and linear complementarity problems. Math Program 71(1):51–69MATHMathSciNetCrossRef
7.
go back to reference Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATH Cortes C, Vapnik VN (1995) Support vector networks. Mach Learn 20:273–297MATH
8.
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel based learning method. Cambridge University Press, CambridgeCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel based learning method. Cambridge University Press, CambridgeCrossRef
9.
go back to reference Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MATHMathSciNet Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MATHMathSciNet
10.
go back to reference Duda RO, Hart PR, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkMATH Duda RO, Hart PR, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkMATH
11.
go back to reference Fung G, Mangasarian OL (2003) Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55(1–2):39–55CrossRef Fung G, Mangasarian OL (2003) Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55(1–2):39–55CrossRef
12.
go back to reference Gao S, Ye Q, Ye N (2011) 1-norm least squares twin support vector machines. Neurocomputing 74:3590–3597CrossRef Gao S, Ye Q, Ye N (2011) 1-norm least squares twin support vector machines. Neurocomputing 74:3590–3597CrossRef
13.
go back to reference Hiriart-Urruty J-B, Strodiot JJ, Nguyen VH (1984) Generalized Hessian matrix and second order optimality conditions for problems with CL1 data. Appl Math Optim 11:43–56MATHMathSciNetCrossRef Hiriart-Urruty J-B, Strodiot JJ, Nguyen VH (1984) Generalized Hessian matrix and second order optimality conditions for problems with CL1 data. Appl Math Optim 11:43–56MATHMathSciNetCrossRef
14.
go back to reference Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 13:415–425CrossRef Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 13:415–425CrossRef
15.
go back to reference Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910 Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910
16.
go back to reference Joachims T, Ndellec C, Rouveriol (1998) Text categorization with support vector machines: learning with many relevant features. Eur Conf Mach Learn 10:137–142 Joachims T, Ndellec C, Rouveriol (1998) Text categorization with support vector machines: learning with many relevant features. Eur Conf Mach Learn 10:137–142
17.
go back to reference Joachims T (1999) Making large-scale support vector machine learning practical. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge Joachims T (1999) Making large-scale support vector machine learning practical. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge
18.
go back to reference Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29:1842–1848CrossRef Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recognit Lett 29:1842–1848CrossRef
19.
go back to reference Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36:7535–7543CrossRef
20.
go back to reference Kumar MA, Khemchandani R, Gopal M, Chandra S (2010) Knowledge based least squares twin support vector machines. Inf Sci 180(23):4606–4618MATHCrossRef Kumar MA, Khemchandani R, Gopal M, Chandra S (2010) Knowledge based least squares twin support vector machines. Inf Sci 180(23):4606–4618MATHCrossRef
21.
go back to reference Lee YJ, Mangasarian OL (2001a) RSVM: Reduced support vector machines. In: Proceedings of the first SIAM international conference on data mining, pp 5–7 Lee YJ, Mangasarian OL (2001a) RSVM: Reduced support vector machines. In: Proceedings of the first SIAM international conference on data mining, pp 5–7
22.
go back to reference Lee YJ, Mangasarian OL (2001b) SSVM: A smooth support vector machine for classification. Comput Optim Appl 20(1):5–22 Lee YJ, Mangasarian OL (2001b) SSVM: A smooth support vector machine for classification. Comput Optim Appl 20(1):5–22
23.
go back to reference Lee YJ, Hsieh WF, Huang CM (2005) \(\epsilon \)-SSVR: A smooth support vector machine for \(\epsilon \)-insensitive regression. IEEE Trans Knowl Data Eng 17(5):678–685 Lee YJ, Hsieh WF, Huang CM (2005) \(\epsilon \)-SSVR: A smooth support vector machine for \(\epsilon \)-insensitive regression. IEEE Trans Knowl Data Eng 17(5):678–685
24.
go back to reference Mangasarian OL, Musicant DR (2001) Lagrangian support vector machines. J Mach Learn Res 1:161–177MATHMathSciNet Mangasarian OL, Musicant DR (2001) Lagrangian support vector machines. J Mach Learn Res 1:161–177MATHMathSciNet
26.
go back to reference Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530MATHMathSciNet Mangasarian OL (2006) Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J Mach Learn Res 7:1517–1530MATHMathSciNet
27.
go back to reference Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRef Mangasarian OL, Wild EW (2006) Multisurface proximal support vector classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74CrossRef
30.
31.
go back to reference Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372CrossRef Peng X (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372CrossRef
32.
go back to reference Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73:2846–2858CrossRef Peng X (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73:2846–2858CrossRef
33.
go back to reference Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44:2678–2692MATHCrossRef Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recognit 44:2678–2692MATHCrossRef
34.
go back to reference Peng X (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181:3967–3980CrossRef Peng X (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181:3967–3980CrossRef
35.
go back to reference Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 185–208 Platt J (1999) Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges CJC, Smola AJ (eds) Advances in kernel methods-support vector learning. MIT Press, Cambridge, MA, pp 185–208
36.
go back to reference Ripley BD (2008) Pattern recognition and neural networks. Cambridge University Press, CambridgeMATH Ripley BD (2008) Pattern recognition and neural networks. Cambridge University Press, CambridgeMATH
37.
go back to reference Shao YH, Chen WJ, Deng NY (2014) Nonparallel hyperplane support vector machine for binary classification problems. Inf Sci 263:22–35MathSciNetCrossRef Shao YH, Chen WJ, Deng NY (2014) Nonparallel hyperplane support vector machine for binary classification problems. Inf Sci 263:22–35MathSciNetCrossRef
38.
go back to reference Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRef Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22(6):962–968CrossRef
39.
go back to reference Scholkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge, MA Scholkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge, MA
41.
go back to reference Tanveer M (2014) Linear programming twin support vector regression. To appear in Filomat Tanveer M (2014) Linear programming twin support vector regression. To appear in Filomat
42.
go back to reference Tanveer M (2013) Smoothing technique on linear programming twin support vector machines. Int J Mach Learn Comput 3(2):240–244 Tanveer M (2013) Smoothing technique on linear programming twin support vector machines. Int J Mach Learn Comput 3(2):240–244
43.
go back to reference Tian Y, Ping Y (2014) Large-scale linear nonparallel support vector machine solver. Neural Netw 50:166–174MATHCrossRef Tian Y, Ping Y (2014) Large-scale linear nonparallel support vector machine solver. Neural Netw 50:166–174MATHCrossRef
44.
go back to reference Tikhonov AN, Arsen VY (1977) Solutions of ill-posed problems. Wiley, New YorkMATH Tikhonov AN, Arsen VY (1977) Solutions of ill-posed problems. Wiley, New YorkMATH
45.
go back to reference Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines: fast SVM training on very large datasets. J Mach Learn Res 6:363–392MATHMathSciNet Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines: fast SVM training on very large datasets. J Mach Learn Res 6:363–392MATHMathSciNet
46.
go back to reference Tsang IW, Kocsor A, Kwok JT (2007) Simpler core vector machines with enclosing balls. In: Proceedings of the 24th international conference on machine learning, Corvallis, pp 911–918 Tsang IW, Kocsor A, Kwok JT (2007) Simpler core vector machines with enclosing balls. In: Proceedings of the 24th international conference on machine learning, Corvallis, pp 911–918
47.
go back to reference Vapnik VN (1998) Statistical learning theory. Wiley, New YorkMATH Vapnik VN (1998) Statistical learning theory. Wiley, New YorkMATH
48.
49.
go back to reference Xu Y, Wang L (2012) A weighted twin support vector regression. Knowl Based Syst 33:92–101CrossRef Xu Y, Wang L (2012) A weighted twin support vector regression. Knowl Based Syst 33:92–101CrossRef
50.
go back to reference Xu Y, Wang L, Zhong P (2012) A rough margin-based \(\nu \)-twin support vector machine. Neural Comput Appl 21(6):1307–1317MathSciNetCrossRef Xu Y, Wang L, Zhong P (2012) A rough margin-based \(\nu \)-twin support vector machine. Neural Comput Appl 21(6):1307–1317MathSciNetCrossRef
51.
go back to reference Zhong P, Xu Y, Zhao Y (2012) Training twin support vector regression via linear programming. Neural Comput Appl 21(2):399–407CrossRef Zhong P, Xu Y, Zhao Y (2012) Training twin support vector regression via linear programming. Neural Comput Appl 21(2):399–407CrossRef
Metadata
Title
Application of smoothing techniques for linear programming twin support vector machines
Author
M. Tanveer
Publication date
01-10-2015
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 1/2015
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-014-0786-3

Other articles of this Issue 1/2015

Knowledge and Information Systems 1/2015 Go to the issue

Premium Partner