Skip to main content
Top

2020 | OriginalPaper | Chapter

13. Application of Stem Cell Encapsulated Hydrogel in Dentistry

Authors : Abdolreza Ardeshirylajimi, Ali Golchin, Jessica Vargas, Lobat Tayebi

Published in: Applications of Biomedical Engineering in Dentistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tissue engineering has become a hopeful approach for reconstructing injured tissues. Researchers and dentists are focusing on employing tissue engineering in areas of damaged tissue in the craniofacial region. Among the various scaffolds utilized as tissue engineering targets, hydrogels represent a scaffold of suitable capability for use as a delivery system and artificial extracellular matrix (ECM) in orofacial tissue engineering. This is because of their high-water content, ability to form a desired shape, sustained release of biological factors, minimally invasive injection method, similarity to the natural ECM with a porous framework for cell transplantation, and their ability to allow for cellular proliferation. This chapter presents the overview of the hydrogels and their applications in orofacial and dental tissue engineering. Also, we highlight some of their properties that provide a guide for selecting appropriate features to prepare suitable hydrogels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Frese, L., Dijkman, P. E., & Hoerstrup, S. P. (2016). Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy, 43(4), 268–274.CrossRef Frese, L., Dijkman, P. E., & Hoerstrup, S. P. (2016). Adipose tissue-derived stem cells in regenerative medicine. Transfusion Medicine and Hemotherapy, 43(4), 268–274.CrossRef
2.
go back to reference Toh, W. (2014). Injectable hydrogels in dentistry: Advances and promises. Austin Journal of Dentistry, 1(1), 1001. Toh, W. (2014). Injectable hydrogels in dentistry: Advances and promises. Austin Journal of Dentistry, 1(1), 1001.
3.
go back to reference Ruan, Q., & Moradian-Oldak, J. (2014). Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. Journal of Visualized Experiments: JoVE, (89). Ruan, Q., & Moradian-Oldak, J. (2014). Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. Journal of Visualized Experiments: JoVE, (89).
4.
go back to reference Galler, K. M., et al. (2011). A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part A, 18(1–2), 176–184. Galler, K. M., et al. (2011). A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part A, 18(1–2), 176–184.
5.
go back to reference Bae, M. S., et al. (2013). ZrO2 surface chemically coated with hyaluronic acid hydrogel loading GDF-5 for osteogenesis in dentistry. Carbohydrate Polymers, 92(1), 167–175.CrossRef Bae, M. S., et al. (2013). ZrO2 surface chemically coated with hyaluronic acid hydrogel loading GDF-5 for osteogenesis in dentistry. Carbohydrate Polymers, 92(1), 167–175.CrossRef
6.
go back to reference Toh, W. S., et al. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835–3845.CrossRef Toh, W. S., et al. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835–3845.CrossRef
7.
go back to reference Wichterle, O., & Lim, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117.CrossRef Wichterle, O., & Lim, D. (1960). Hydrophilic gels for biological use. Nature, 185(4706), 117.CrossRef
8.
go back to reference Vasani, D., et al. (2011). Recent advances in the therapy of castration-resistant prostate cancer: The price of progress. Maturitas, 70(2), 194–196.CrossRef Vasani, D., et al. (2011). Recent advances in the therapy of castration-resistant prostate cancer: The price of progress. Maturitas, 70(2), 194–196.CrossRef
9.
go back to reference Ungerleider, J. L., & Christman, K. L. (2014). Concise review: Injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: Translational challenges and progress. Stem Cells Translational Medicine, 3(9), 1090–1099.CrossRef Ungerleider, J. L., & Christman, K. L. (2014). Concise review: Injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: Translational challenges and progress. Stem Cells Translational Medicine, 3(9), 1090–1099.CrossRef
10.
go back to reference Ruvinov, E., Leor, J., & Cohen, S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582.CrossRef Ruvinov, E., Leor, J., & Cohen, S. (2010). The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials, 31(16), 4573–4582.CrossRef
11.
go back to reference Zhao, Y., et al. (2011). Preparation of gelatin microspheres encapsulated with bFGF for therapeutic angiogenesis in a canine ischemic hind limb. Journal of Biomaterials Science, Polymer Edition, 22(4–6), 665–682.CrossRef Zhao, Y., et al. (2011). Preparation of gelatin microspheres encapsulated with bFGF for therapeutic angiogenesis in a canine ischemic hind limb. Journal of Biomaterials Science, Polymer Edition, 22(4–6), 665–682.CrossRef
12.
go back to reference Liu, M., et al. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.CrossRef Liu, M., et al. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.CrossRef
13.
go back to reference Golchin, A., Hosseinzadeh, S., & Roshangar, L. (2018). The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 1–12. Golchin, A., Hosseinzadeh, S., & Roshangar, L. (2018). The role of nanomaterials in cell delivery systems. Medical Molecular Morphology, 1–12.
14.
go back to reference Korbelář, P., Vacik, J., & Dylevský, I. (1988). Experimental implantation of hydrogel into the bone. Journal of Biomedical Materials Research, 22(9), 751–762.CrossRef Korbelář, P., Vacik, J., & Dylevský, I. (1988). Experimental implantation of hydrogel into the bone. Journal of Biomedical Materials Research, 22(9), 751–762.CrossRef
15.
go back to reference Pellico, M. A. (1998). Stabilized anhydrous tooth whitening gel. Google Patents. Pellico, M. A. (1998). Stabilized anhydrous tooth whitening gel. Google Patents.
16.
go back to reference Li, R.-K., & Weisel, R. D. (2014). Cardiac regeneration and repair: Biomaterials and tissue engineering. Oxford: Elsevier. Li, R.-K., & Weisel, R. D. (2014). Cardiac regeneration and repair: Biomaterials and tissue engineering. Oxford: Elsevier.
17.
go back to reference Hasan, A., et al. (2015). Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advanced Science, 2(11), 1500122.CrossRef Hasan, A., et al. (2015). Injectable hydrogels for cardiac tissue repair after myocardial infarction. Advanced Science, 2(11), 1500122.CrossRef
18.
go back to reference Farrar, D. (2011). Advanced wound repair therapies. New York: Elsevier. Farrar, D. (2011). Advanced wound repair therapies. New York: Elsevier.
19.
go back to reference Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 1(12), 16071.CrossRef Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 1(12), 16071.CrossRef
20.
go back to reference Kamath, K. R., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11(1–2), 59–84.CrossRef Kamath, K. R., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11(1–2), 59–84.CrossRef
21.
go back to reference Williams, D. F., & Zhong, S. P. (1994). Biodeterioration/biodegradation of polymeric medical devices in situ. International Biodeterioration & Biodegradation, 34(2), 95–130.CrossRef Williams, D. F., & Zhong, S. P. (1994). Biodeterioration/biodegradation of polymeric medical devices in situ. International Biodeterioration & Biodegradation, 34(2), 95–130.CrossRef
22.
go back to reference Sauro, S., et al. (2013). Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. Journal of Biomaterials Science, Polymer Edition, 24(8), 940–956.CrossRef Sauro, S., et al. (2013). Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. Journal of Biomaterials Science, Polymer Edition, 24(8), 940–956.CrossRef
23.
go back to reference Galler, K. M., et al. (2011). Bioengineering of dental stem cells in a PEGylated fibrin gel. Regenerative Medicine, 6(2), 191–200.CrossRef Galler, K. M., et al. (2011). Bioengineering of dental stem cells in a PEGylated fibrin gel. Regenerative Medicine, 6(2), 191–200.CrossRef
24.
go back to reference Wang, Y. Y., et al. (2015). Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. European Cells & Materials, 29, 342–355.CrossRef Wang, Y. Y., et al. (2015). Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. European Cells & Materials, 29, 342–355.CrossRef
25.
go back to reference Jones, T. D., et al. (2016). An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading. Advances in Medicine, 2016, 7363579.CrossRef Jones, T. D., et al. (2016). An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading. Advances in Medicine, 2016, 7363579.CrossRef
26.
go back to reference Cavalcanti, B. N., Zeitlin, B. D., & Nör, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29(1), 97–102.CrossRef Cavalcanti, B. N., Zeitlin, B. D., & Nör, J. E. (2013). A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials, 29(1), 97–102.CrossRef
27.
go back to reference Flores-Arriaga, J. C., et al. (2014). Cell viability of starch-based hydrogels for maxillofacial bone regeneration. Dental Materials, 30, e108–e109.CrossRef Flores-Arriaga, J. C., et al. (2014). Cell viability of starch-based hydrogels for maxillofacial bone regeneration. Dental Materials, 30, e108–e109.CrossRef
28.
go back to reference Tommasi, G., Perni, S., & Prokopovich, P. (2016). An injectable hydrogel as bone graft material with added antimicrobial properties. Tissue Engineering Part A, 22(11–12), 862–872.CrossRef Tommasi, G., Perni, S., & Prokopovich, P. (2016). An injectable hydrogel as bone graft material with added antimicrobial properties. Tissue Engineering Part A, 22(11–12), 862–872.CrossRef
29.
go back to reference Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690–697.CrossRef Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690–697.CrossRef
30.
go back to reference Neel, E. A. A., et al. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42(8), 915–928.CrossRef Neel, E. A. A., et al. (2014). Tissue engineering in dentistry. Journal of Dentistry, 42(8), 915–928.CrossRef
31.
go back to reference Wan, A. C. A., & Ying, J. Y. (2010). Nanomaterials for in situ cell delivery and tissue regeneration. Advanced Drug Delivery Reviews, 62(7–8), 731–740.CrossRef Wan, A. C. A., & Ying, J. Y. (2010). Nanomaterials for in situ cell delivery and tissue regeneration. Advanced Drug Delivery Reviews, 62(7–8), 731–740.CrossRef
32.
go back to reference Moshaverinia, A., et al. (2013). Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Journal of Biomedical Materials Research Part A, 101(11), 3285–3294. Moshaverinia, A., et al. (2013). Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Journal of Biomedical Materials Research Part A, 101(11), 3285–3294.
33.
go back to reference Benoit, D. S. W., et al. (2008). Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Materials, 7(10), 816.CrossRef Benoit, D. S. W., et al. (2008). Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nature Materials, 7(10), 816.CrossRef
34.
go back to reference Khojasteh, A., et al. (2016). Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering: C, 69, 780–788.CrossRef Khojasteh, A., et al. (2016). Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Materials Science and Engineering: C, 69, 780–788.CrossRef
35.
go back to reference Bongio, M., et al. (2011). Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. European Cells & Materials, 22, 359–376.CrossRef Bongio, M., et al. (2011). Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. European Cells & Materials, 22, 359–376.CrossRef
36.
go back to reference Gkioni, K., et al. (2010). Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews, 16(6), 577–585.CrossRef Gkioni, K., et al. (2010). Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews, 16(6), 577–585.CrossRef
37.
go back to reference Hunt, N. C., & Grover, L. M. (2010). Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 32(6), 733–742.CrossRef Hunt, N. C., & Grover, L. M. (2010). Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters, 32(6), 733–742.CrossRef
38.
go back to reference Douglas, T. E. L., et al. (2012). Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase. Macromolecular Bioscience, 12(8), 1077–1089.CrossRef Douglas, T. E. L., et al. (2012). Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase. Macromolecular Bioscience, 12(8), 1077–1089.CrossRef
39.
go back to reference Kimura, K., et al. (2018). Formation process of hydroxyapatite granules in agarose hydrogel by electrophoresis. Crystal Growth & Design, 18(4), 1961–1966.CrossRef Kimura, K., et al. (2018). Formation process of hydroxyapatite granules in agarose hydrogel by electrophoresis. Crystal Growth & Design, 18(4), 1961–1966.CrossRef
40.
go back to reference Lu, Y., et al. (2017). Multifunctional copper-containing Carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Applied Materials & Interfaces, 10(1), 127–138.CrossRef Lu, Y., et al. (2017). Multifunctional copper-containing Carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS Applied Materials & Interfaces, 10(1), 127–138.CrossRef
41.
go back to reference Vo, T. N., et al. (2015). In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. Journal of Controlled Release, 205, 25–34.CrossRef Vo, T. N., et al. (2015). In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. Journal of Controlled Release, 205, 25–34.CrossRef
42.
go back to reference Xu, B., et al. (2017). A mineralized high strength and tough hydrogel for skull bone regeneration. Advanced Functional Materials, 27(4), 1604327.CrossRef Xu, B., et al. (2017). A mineralized high strength and tough hydrogel for skull bone regeneration. Advanced Functional Materials, 27(4), 1604327.CrossRef
43.
go back to reference Ho, E., Lowman, A., & Marcolongo, M. (2007). In situ apatite forming injectable hydrogel. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 83(1), 249–256.CrossRef Ho, E., Lowman, A., & Marcolongo, M. (2007). In situ apatite forming injectable hydrogel. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 83(1), 249–256.CrossRef
44.
go back to reference Douglas, T. E. L., et al. (2014). Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomedical Materials, 9(4), 045014.CrossRef Douglas, T. E. L., et al. (2014). Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomedical Materials, 9(4), 045014.CrossRef
45.
go back to reference Watson, B. M., et al. (2015). Biodegradable, in situ-forming cell-laden hydrogel composites of hydroxyapatite nanoparticles for bone regeneration. Industrial & Engineering Chemistry Research, 54(42), 10206–10211.CrossRef Watson, B. M., et al. (2015). Biodegradable, in situ-forming cell-laden hydrogel composites of hydroxyapatite nanoparticles for bone regeneration. Industrial & Engineering Chemistry Research, 54(42), 10206–10211.CrossRef
46.
go back to reference Sánchez-Ferrero, A., et al. (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials, 68, 42–53.CrossRef Sánchez-Ferrero, A., et al. (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials, 68, 42–53.CrossRef
47.
go back to reference He, T., et al. (2017). In situ fabrication of defective CoN x single clusters on reduced graphene oxide sheets with excellent electrocatalytic activity for oxygen reduction. ACS Applied Materials & Interfaces, 9(27), 22490–22501.CrossRef He, T., et al. (2017). In situ fabrication of defective CoN x single clusters on reduced graphene oxide sheets with excellent electrocatalytic activity for oxygen reduction. ACS Applied Materials & Interfaces, 9(27), 22490–22501.CrossRef
48.
go back to reference Niranjan, R., et al. (2013). A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 54, 24–29.CrossRef Niranjan, R., et al. (2013). A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 54, 24–29.CrossRef
49.
go back to reference Dhivya, S., et al. (2015). Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of Nanobiotechnology, 13(1), 40.CrossRef Dhivya, S., et al. (2015). Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of Nanobiotechnology, 13(1), 40.CrossRef
50.
go back to reference Fu, S., et al. (2012). Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials, 33(19), 4801–4809.CrossRef Fu, S., et al. (2012). Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials, 33(19), 4801–4809.CrossRef
Metadata
Title
Application of Stem Cell Encapsulated Hydrogel in Dentistry
Authors
Abdolreza Ardeshirylajimi
Ali Golchin
Jessica Vargas
Lobat Tayebi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-21583-5_13