Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

4. Application of the 2D Models of Media with Dense and Non-dense Packing of the Particles for Solving the Parametric Identification Problems

Authors : Vladimir I. Erofeev, Igor S. Pavlov

Published in: Structural Modeling of Metamaterials

Publisher: Springer International Publishing

Abstract

Theoretical estimates [1] and experimental data [25] show that rotational waves can exist in solids in the high-frequency field (> 109 – 1011 Hz), where it is rather difficult to carry out acoustic experiments with the technical viewpoint. The question arises: is it possible to obtain some information about the microstructure of a medium from acoustic measurements in the low-frequency range (106 – 107 Hz), when the rotational waves do not propagate in the medium? To this purpose, we will consider in this chapter the low-frequency approximation of Eqs. (2.8) and (3.6), in which the microrotations of the particles of the medium are not independent and are determined by the displacement field. Further, by comparing the obtained equations describing the propagation and interaction of longitudinal and transverse waves in a granular medium in the low-frequency approximation with the equations of the classical theory of elasticity, we will consider the problem of parametric identification of the developed models.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009) CrossRef Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009) CrossRef
2.
go back to reference Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976). (in Russian) Gross, E.F.: Izbrannye Trudy (Selected Papers). Nauka, Leningrad (1976). (in Russian)
3.
go back to reference Gross, E.F.: Light scattering and relaxation phenomena in liquids. Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian) Gross, E.F.: Light scattering and relaxation phenomena in liquids. Doklady Akademii Nauk SSSR 28(9), 788–793 (1940) (in Russian)
4.
go back to reference Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP 16(1), 53–59 (1946) Gross, E.F., Korshunov, A.V.: Rotational oscillations of molecules in a crystal lattice of organic substances and scattering spectra. JETP 16(1), 53–59 (1946)
5.
go back to reference Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-iodiobenzenes, meta-iodiobenzenes and ortho-iodiobenzenes. JETP 20, 293–296 (1950) Gross, E.F., Korshunov, A.V., Sel’kin, V.A.: Raman spectra of small frequencies of crystals of para-iodiobenzenes, meta-iodiobenzenes and ortho-iodiobenzenes. JETP 20, 293–296 (1950)
6.
go back to reference Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and Solids. Springer. New York (1999) Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and Solids. Springer. New York (1999)
7.
8.
go back to reference Kunin, I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin Kunin, I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin
9.
go back to reference Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (in Russian) Savin, G.N., Lukashev, A.A., Lysko, E.M., Veremeenko, S.V., Agas’ev, G.G.: Propagation of elastic waves in the Cosserat continuum with constrained particle rotation. Prikl. Mekh. (Appl. Mech.) 6(6), 37–40 (in Russian)
10.
go back to reference Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010) CrossRef Pavlov, I.S.: Acoustic identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010) CrossRef
11.
go back to reference Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech. -ASCE 1, 52–59 (1997) Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech. -ASCE 1, 52–59 (1997)
12.
go back to reference Shorkin, V.S.: Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity. Mech. Solids. 46(6), 898–912 (2011) Shorkin, V.S.: Nonlinear dispersion properties of high-frequency waves in the gradient theory of elasticity. Mech. Solids. 46(6), 898–912 (2011)
13.
go back to reference Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999) Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999)
14.
go back to reference Korotkina, M.R.: Remark About Moment Stresses in Discrete Media, vol. 5, pp. 103–109. Moscow University Mechanics Bulletin. Allerton Press, Inc (1969) Korotkina, M.R.: Remark About Moment Stresses in Discrete Media, vol. 5, pp. 103–109. Moscow University Mechanics Bulletin. Allerton Press, Inc (1969)
15.
go back to reference Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow, 1965; Plenum Press, New York, 1968 Fedorov, V.I.: Theory of Elastic Waves in Crystals. Nauka, Moscow, 1965; Plenum Press, New York, 1968
16.
go back to reference Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland Publ. Comp, Amsterdam (1972) Tucker, J.W., Rampton, V.W.: Microwave Ultrasonics in Solid State Physics. North-Holland Publ. Comp, Amsterdam (1972)
17.
go back to reference Krivtsov, A.M.: Deformation and Destruction of Microstructured Solids, p. 304. Fizmatlit Publ., Moscow (2007) (in Russian) Krivtsov, A.M.: Deformation and Destruction of Microstructured Solids, p. 304. Fizmatlit Publ., Moscow (2007) (in Russian)
18.
go back to reference Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000) Pavlov, P.V., Khokhlov, A.F.: Physics of Solid Body: Textbook, p. 494. Visshaya School, Moscow (2000)
19.
go back to reference Kitaygorodskiy, A.I.: Molecular Crystals, p. 424. Nauka Publ., Moscow (1971) (in Russian) Kitaygorodskiy, A.I.: Molecular Crystals, p. 424. Nauka Publ., Moscow (1971) (in Russian)
20.
go back to reference Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968) Akhiezer, A.I., Bar’yakhtar, V.G., Peletminskii, S.V.: Spin Waves. North Holland, Amsterdam (1968)
21.
go back to reference Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: Elastic constants and elasticity moduli of metals and nonmetals. In: Frantsevich, I.N. (ed.) Reference Book. Naukova Dumka, Kiev (1982). (in Russian) Frantsevich, I.N., Voronov, F.F., Bakuta, S.A.: Elastic constants and elasticity moduli of metals and nonmetals. In: Frantsevich, I.N. (ed.) Reference Book. Naukova Dumka, Kiev (1982). (in Russian)
22.
go back to reference Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010) Krivtsov, A.M., Podol’skaya, E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids 45(3), 370–378 (2010)
23.
go back to reference Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley Publishing Company, Inc, Reading, Massachusetts, Palo Alto, London (1964) Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley Publishing Company, Inc, Reading, Massachusetts, Palo Alto, London (1964)
24.
go back to reference Yildirim, T., Harris, A.B.: Lattice dynamics of solids C 60. Phys. Rev. B 46, 7878–7896 (1992) CrossRef Yildirim, T., Harris, A.B.: Lattice dynamics of solids C 60. Phys. Rev. B 46, 7878–7896 (1992) CrossRef
25.
go back to reference Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Sov. Phys. Tech. Phys. 28, 2255 (1958) Abolinsh, Y.Y., Gross, E.F., Shultin, A.A.: Optic-acoustic effect in crystals. Sov. Phys. Tech. Phys. 28, 2255 (1958)
28.
go back to reference Suvorov, Y.M., Tarlakovskii, D.V., Fedotenkov, G.V.: The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium. J. Appl. Math. Mech. 76(5), 511–518 (2012) CrossRef Suvorov, Y.M., Tarlakovskii, D.V., Fedotenkov, G.V.: The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium. J. Appl. Math. Mech. 76(5), 511–518 (2012) CrossRef
30.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001) Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)
31.
go back to reference Hirth, J.P., Lothe, J.: Theory of Dislocations. Mc Graw-Hill Book Company, New York (1970) Hirth, J.P., Lothe, J.: Theory of Dislocations. Mc Graw-Hill Book Company, New York (1970)
32.
go back to reference Koniok, D.A., Voitsekhovsky, K.V., Pleskachevsky, Yu.M., Shilko, S.V.: Materials with negative Poisson’s ratio (The review). Composite Mech. Des. 10, 35–69 (2004) Koniok, D.A., Voitsekhovsky, K.V., Pleskachevsky, Yu.M., Shilko, S.V.: Materials with negative Poisson’s ratio (The review). Composite Mech. Des. 10, 35–69 (2004)
33.
go back to reference Yang, W.: Review on auxetic materials. J. Mater. Sci. 39, 3269–3279 (2004) Yang, W.: Review on auxetic materials. J. Mater. Sci. 39, 3269–3279 (2004)
34.
go back to reference Zubov, V.G., Firsova, M.M.: Elastic properties of quartz near the α-β transition. Sov. Phys. Crystallograthy 7, 374–376 (1962) Zubov, V.G., Firsova, M.M.: Elastic properties of quartz near the α-β transition. Sov. Phys. Crystallograthy 7, 374–376 (1962)
35.
go back to reference Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour New Ser. 4, 170–174 (1991) CrossRef Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour New Ser. 4, 170–174 (1991) CrossRef
36.
go back to reference Baimova, J.A., Rysaeva, L.Kh., Dmitriev, S.V., Lisovenko, D.S., Gorodtsov, V.A., Indeitsev, D.A.: Auxetic behaviour of carbon nanostructures. Mater. Phys. Mech. 33(1), 1–11 (2017) Baimova, J.A., Rysaeva, L.Kh., Dmitriev, S.V., Lisovenko, D.S., Gorodtsov, V.A., Indeitsev, D.A.: Auxetic behaviour of carbon nanostructures. Mater. Phys. Mech. 33(1), 1–11 (2017)
37.
go back to reference Hall, L.J., Coluci, V.R., Galvão, D.S., Kozlov, M.E., Zhang, M., Dantas, S.O., Baughman, R.H.: Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875), 504–507 (2008) CrossRef Hall, L.J., Coluci, V.R., Galvão, D.S., Kozlov, M.E., Zhang, M., Dantas, S.O., Baughman, R.H.: Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875), 504–507 (2008) CrossRef
38.
go back to reference Zaitsev, V.Y., Radostin, A.V., Pasternak, E., Dyskin, A.: Extracting real-crack properties from non-linear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios. Nonlinear Process. Geophys. 24(3), 543–551 (2017) CrossRef Zaitsev, V.Y., Radostin, A.V., Pasternak, E., Dyskin, A.: Extracting real-crack properties from non-linear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios. Nonlinear Process. Geophys. 24(3), 543–551 (2017) CrossRef
39.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Doklady Phys. 58(9), 400–404 (2013) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Doklady Phys. 58(9), 400–404 (2013)
41.
go back to reference Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi B 245(11), 2395–2404 (2008) CrossRef Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi B 245(11), 2395–2404 (2008) CrossRef
42.
go back to reference Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys. Status Solidi B 245(3), 521–529 (2008) CrossRef Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys. Status Solidi B 245(3), 521–529 (2008) CrossRef
43.
go back to reference Narojczyk, J.W., Wojciechowski, K.W.: Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Crystalline Solids 356(37–40), 2026–2032 (2010) Narojczyk, J.W., Wojciechowski, K.W.: Elastic properties of degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature. J. Non-Crystalline Solids 356(37–40), 2026–2032 (2010)
44.
go back to reference Novikov, V.V., Wojciechowski, K.W.: Negative Poisson coefficient of fractal structures. Phys. Solid State 41(12), 1970–1975 (1999) CrossRef Novikov, V.V., Wojciechowski, K.W.: Negative Poisson coefficient of fractal structures. Phys. Solid State 41(12), 1970–1975 (1999) CrossRef
45.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: The elastic properties of hexagonal auxetics under pressure. Phys. Status Solidi B 253(7), 1261–1269 (2016) CrossRef Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: The elastic properties of hexagonal auxetics under pressure. Phys. Status Solidi B 253(7), 1261–1269 (2016) CrossRef
46.
go back to reference Wojciechowski, K.W.: Negative Poisson ratios at negative pressures. Mol. Phys. Rep. 10, 129–136 (1995) Wojciechowski, K.W.: Negative Poisson ratios at negative pressures. Mol. Phys. Rep. 10, 129–136 (1995)
47.
go back to reference Lethbridge, Z.A.D., Walton, R.I., Marmier, A., Smith, C.W., Evans, K.E.: Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Materialia 58, 6444–6451 (2010) Lethbridge, Z.A.D., Walton, R.I., Marmier, A., Smith, C.W., Evans, K.E.: Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Materialia 58, 6444–6451 (2010)
48.
go back to reference Belomestnykh, V.N., Soboleva, E.G.: Unconventional approach to determination anisotropic Poisson’s ratios in cubic crystals. Lett. Mater. 2(1), 13–16 (2012) CrossRef Belomestnykh, V.N., Soboleva, E.G.: Unconventional approach to determination anisotropic Poisson’s ratios in cubic crystals. Lett. Mater. 2(1), 13–16 (2012) CrossRef
49.
go back to reference Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971) Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971)
50.
go back to reference Erofeev, V.I., Pavlov, I.S.: Parametric identification of crystals having a cubic lattice with negative Poisson’s ratios. J. Appl. Mech. Tech. Phys. 56(6), 1015–1022 (2015) CrossRef Erofeev, V.I., Pavlov, I.S.: Parametric identification of crystals having a cubic lattice with negative Poisson’s ratios. J. Appl. Mech. Tech. Phys. 56(6), 1015–1022 (2015) CrossRef
51.
go back to reference Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. European J. Mech. A Solids 46, 96–105 (2014) Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. European J. Mech. A Solids 46, 96–105 (2014)
Metadata
Title
Application of the 2D Models of Media with Dense and Non-dense Packing of the Particles for Solving the Parametric Identification Problems
Authors
Vladimir I. Erofeev
Igor S. Pavlov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_4

Premium Partners