Skip to main content
Top

2022 | OriginalPaper | Chapter

15. Application of Wire Arc Additive Manufacturing for Inconel 718 Superalloy

Authors : G. K. Sujan, Huijun Li, Zengxi Pan, Daniel Liang, Nazmul Alam

Published in: Materials, Structures and Manufacturing for Aircraft

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The wire arc additive manufacturing (WAAM) is one of the advanced manufacturing processes to fabricate full-density 3D Inconel 718 (IN718) metal parts in an open freeform environment. Thus, there is no size restriction of the fabricated parts using this process which is suitable for industry-led medium to large production supply chain. So far, the use of WAAM process in the fabrication of IN718 parts is solely focused on the structure–property relationship under heat-treated conditions. Therefore, the present study is attempted to investigate the effects of welding parameters, heat-treatment, and high-oxidation temperature on the processing–microstructure–property relationship of IN718 alloys manufactured via gas tungsten arc welding (GTAW)-based WAAM process. A wrought IN718 alloy was also studied for comparison.
It was observed that increasing the arc current increased the width and reduced the height of the walls as a result of higher surface tension and arc pressure acting upon a constant volume of material under constant wire feed speed and travel speed. A complete opposite trend was seen with increasing wire feed speed under constant arc current and travel speed. Increasing the travel speed adversely affected both the width and height of the walls due to the deposition of lower volume of material. Irrespective of welding conditions, a highly textured and homogeneous microstructure of γ-matrix was developed parallel to the build-up direction. Due to the elemental segregation of heavy elements, the matrix microstructure was mostly composed of Nb-depleted dendritic core region (DCR) along with Nb-enriched interdendritic region (IDR). The mechanical properties in terms of microhardness and tensile strength were found to be similar and independent of the effect of processing parameters. A modified homogenization (1100 °C for 1 h/air cooling)-annealed (720 °C for 8 h/furnace cooling at ~71.2 °C/h to 620 °C for 8 h/air cooling) condition was performed on WAAM IN718 alloys to dissolve laves phase and precipitate out strengthening phase of γ″. The heat-treated WAAM parts showed weakly anisotropic tensile properties at room temperature and exceeded the minimum requirements for cast IN718, but not that of wrought IN718 due to its large columnar grain structure. The high-temperature oxidation study at 1000 °C revealed that the kinetics of oxidation followed the parabolic rate law and were independent on the thermal history, microstructural, and compositional heterogeneities of WAAM parts. Both AF and HA alloys formed oxide scales that were identical in nature. The external oxidation of the protective Cr2O3 scale was formed at the air/alloy interface, which was covered by an outermost thin layer of rutile-TiO2 and spinel-MnCr2O4 at air/scale interface. The internal oxidation of Nb-rich rutile-Ti0.67Nb1.33O4 scale at the scale/alloy interface and subscale of Al2O3 within the alloy was observed. Based on the thermodynamic data and kinetics abilities of metal cations, a mechanism of oxide layer formation was suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Akca, E., & Gürsel, A. (2015). A review on superalloys and IN718 nickel-based INCONEL superalloy. Periodicals of Engineering and Natural Sciences, 3(1), 15–27. Akca, E., & Gürsel, A. (2015). A review on superalloys and IN718 nickel-based INCONEL superalloy. Periodicals of Engineering and Natural Sciences, 3(1), 15–27.
2.
go back to reference Scharfrik, R., & Sprague, R. (2004). The saga of gas turbine materials, Part III. Advanced Materials and Processes, 162, 33–35. Scharfrik, R., & Sprague, R. (2004). The saga of gas turbine materials, Part III. Advanced Materials and Processes, 162, 33–35.
3.
go back to reference Pollock, T. M., & Tin, S. (2006). Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. Journal of Propulsion and Power, 22(2), 361–374.CrossRef Pollock, T. M., & Tin, S. (2006). Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. Journal of Propulsion and Power, 22(2), 361–374.CrossRef
4.
go back to reference Patel, S., deBarbadillo, J., & Coryell, S. (2018). Superalloy 718: Evolution of the alloy from high to low temperature application. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications. Patel, S., deBarbadillo, J., & Coryell, S. (2018). Superalloy 718: Evolution of the alloy from high to low temperature application. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications.
6.
go back to reference Kwon, S. I., Bae, S. H., Do, J. H., Jo, C. Y., & Hong, H. U. (2016). Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded inconel 718. Metallurgical and Materials Transactions A, 47(2), 777–787.CrossRef Kwon, S. I., Bae, S. H., Do, J. H., Jo, C. Y., & Hong, H. U. (2016). Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded inconel 718. Metallurgical and Materials Transactions A, 47(2), 777–787.CrossRef
7.
go back to reference Chen, K., Dong, J., & Yao, Z. (2021). Creep failure and damage mechanism of inconel 718 alloy at 800–900° C. Metals and Materials International, 27, 970–984.CrossRef Chen, K., Dong, J., & Yao, Z. (2021). Creep failure and damage mechanism of inconel 718 alloy at 800–900° C. Metals and Materials International, 27, 970–984.CrossRef
8.
go back to reference Kuo, C.-M., Yang, Y.-T., Bor, H.-Y., Wei, C.-N., & Tai, C.-C. (2009). Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Materials Science and Engineering: A, 510, 289–294.CrossRef Kuo, C.-M., Yang, Y.-T., Bor, H.-Y., Wei, C.-N., & Tai, C.-C. (2009). Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Materials Science and Engineering: A, 510, 289–294.CrossRef
9.
go back to reference Shi, J.J, Li, X., Zhang, Z.X., Cao, G.H., Russell, A.M., Zhou Z.J., Li, C.P. & Chen, G.F. (2019). Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting. Materials Science and Engineering: A, 765, 138282. Shi, J.J, Li, X., Zhang, Z.X., Cao, G.H., Russell, A.M., Zhou Z.J., Li, C.P. & Chen, G.F. (2019). Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting. Materials Science and Engineering: A, 765, 138282.
10.
go back to reference Ono, Y., Yuri, T., Nagashima, N., Ogata, T., & Nagao, N. (2015). Effect of microstructure on high-cycle fatigue properties of Alloy718 plates. In IOP conference series: Materials science and engineering. Ono, Y., Yuri, T., Nagashima, N., Ogata, T., & Nagao, N. (2015). Effect of microstructure on high-cycle fatigue properties of Alloy718 plates. In IOP conference series: Materials science and engineering.
11.
go back to reference Ono, Y., Yuri, T., Sumiyoshi, H., Takeuchi, E., Matsuoka, S., & Ogata, T. (2004). High-cycle fatigue properties at cryogenic temperatures in Inconel 718 nickel-based superalloy. Materials Transactions, 45(2), 342–345.CrossRef Ono, Y., Yuri, T., Sumiyoshi, H., Takeuchi, E., Matsuoka, S., & Ogata, T. (2004). High-cycle fatigue properties at cryogenic temperatures in Inconel 718 nickel-based superalloy. Materials Transactions, 45(2), 342–345.CrossRef
12.
go back to reference Seow, C. E., Coules, H. E., Wu, G., Khan, R. H., Xu, X., & Williams, S. (2019). Wire+ Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials & Design, 183, 108157.CrossRef Seow, C. E., Coules, H. E., Wu, G., Khan, R. H., Xu, X., & Williams, S. (2019). Wire+ Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials & Design, 183, 108157.CrossRef
13.
go back to reference Paulonis, D. F., Oblak, J. M., & Duvall, D. S. (1969). Precipitation in nickel-base alloy 718. American Society of Metals, 62, 611–622. Paulonis, D. F., Oblak, J. M., & Duvall, D. S. (1969). Precipitation in nickel-base alloy 718. American Society of Metals, 62, 611–622.
14.
go back to reference Hong, S. J., Chen, W. P., & Wang, T. W. (2001). A diffraction study of the γ″ phase in INCONEL 718 superalloy. Metallurgical and Materials Transactions A, 32(8), 1887–1901.CrossRef Hong, S. J., Chen, W. P., & Wang, T. W. (2001). A diffraction study of the γ″ phase in INCONEL 718 superalloy. Metallurgical and Materials Transactions A, 32(8), 1887–1901.CrossRef
15.
go back to reference Cozar, R., & Pineau, A. (1973). Morphology of y′ and y″ precipitates and thermal stability of inconel 718 type alloys. Metallurgical Transactions, 4(1), 47–59.CrossRef Cozar, R., & Pineau, A. (1973). Morphology of y′ and y″ precipitates and thermal stability of inconel 718 type alloys. Metallurgical Transactions, 4(1), 47–59.CrossRef
16.
go back to reference Oblak, J. M., Paulonis, D. F., & Duvall, D. S. (1974). Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates. Metallurgical Transactions, 5(1), 143–153.CrossRef Oblak, J. M., Paulonis, D. F., & Duvall, D. S. (1974). Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates. Metallurgical Transactions, 5(1), 143–153.CrossRef
17.
go back to reference Chaturvedi, M. C., & Han, Y.-F. (1983). Strengthening mechanisms in Inconel 718 superalloy. Metal science, 17(3), 145–149.CrossRef Chaturvedi, M. C., & Han, Y.-F. (1983). Strengthening mechanisms in Inconel 718 superalloy. Metal science, 17(3), 145–149.CrossRef
18.
go back to reference Han, Y.-F., Deb, P., & Chaturvedi, M. C. (1982). Coarsening behaviour of γ″-and γ′-particles in Inconel alloy 718. Metal Science, 16(12), 555–562.CrossRef Han, Y.-F., Deb, P., & Chaturvedi, M. C. (1982). Coarsening behaviour of γ″-and γ′-particles in Inconel alloy 718. Metal Science, 16(12), 555–562.CrossRef
19.
go back to reference Drexler, A., Oberwinkler, B., Primig, S., Turk, C., Povoden-Karadeniz, E., Heinemann, A., Ecker, W., & Stockinger, M. (2018). Experimental and numerical investigations of the γ ″and γ′ precipitation kinetics in Alloy 718. Materials Science and Engineering: A, 723, 314–323.CrossRef Drexler, A., Oberwinkler, B., Primig, S., Turk, C., Povoden-Karadeniz, E., Heinemann, A., Ecker, W., & Stockinger, M. (2018). Experimental and numerical investigations of the γ ″and γ′ precipitation kinetics in Alloy 718. Materials Science and Engineering: A, 723, 314–323.CrossRef
20.
go back to reference Munjal, V., & Ardell, A. J. (1975). Precipitation hardening of Ni-12.19 at.% Al alloy single crystals. Acta Metallurgica, 23(4), 513–520.CrossRef Munjal, V., & Ardell, A. J. (1975). Precipitation hardening of Ni-12.19 at.% Al alloy single crystals. Acta Metallurgica, 23(4), 513–520.CrossRef
21.
go back to reference Greene, G. A., & Finfrock, C. C. (2001). Oxidation of Inconel 718 in air at high temperatures. Oxidation of Metals, 55(5–6), 505–521.CrossRef Greene, G. A., & Finfrock, C. C. (2001). Oxidation of Inconel 718 in air at high temperatures. Oxidation of Metals, 55(5–6), 505–521.CrossRef
22.
go back to reference Sadeghimeresht, E., Karimi, P., Zhang, P., Peng, R., Andersson, J., Pejryd, L., & Joshi, S. (2018). Isothermal oxidation behavior of EBM-additive manufactured alloy 718. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications. Sadeghimeresht, E., Karimi, P., Zhang, P., Peng, R., Andersson, J., Pejryd, L., & Joshi, S. (2018). Isothermal oxidation behavior of EBM-additive manufactured alloy 718. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications.
23.
go back to reference Jia, Q., & Gu, D. (2014). Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Optics & Laser Technology, 62, 161–171.CrossRef Jia, Q., & Gu, D. (2014). Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Optics & Laser Technology, 62, 161–171.CrossRef
24.
go back to reference Al-Hatab, K. A., Al-Bukhaiti, M. A., Krupp, U., & Kantehm, M. (2011). Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxidation of Metals, 75(3–4), 209–228.CrossRef Al-Hatab, K. A., Al-Bukhaiti, M. A., Krupp, U., & Kantehm, M. (2011). Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxidation of Metals, 75(3–4), 209–228.CrossRef
25.
go back to reference Klapper, H. S., Zadorozne, N. S., & Rebak, R. B. (2017). Localized corrosion characteristics of nickel alloys: A review. Acta Metallurgica Sinica (English Letters), 30(4), 296–305.CrossRef Klapper, H. S., Zadorozne, N. S., & Rebak, R. B. (2017). Localized corrosion characteristics of nickel alloys: A review. Acta Metallurgica Sinica (English Letters), 30(4), 296–305.CrossRef
26.
go back to reference Luo, S., Huang, W., Yang, H., Yang, J., Wang, Z., & Zeng, X. (2019). Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments. Additive Manufacturing, 30, 100875.CrossRef Luo, S., Huang, W., Yang, H., Yang, J., Wang, Z., & Zeng, X. (2019). Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments. Additive Manufacturing, 30, 100875.CrossRef
27.
go back to reference Debarbadillo, J. J., & Mannan, S. K. (2012). Alloy 718 for oilfield applications. JOM, 64(2), 265–270.CrossRef Debarbadillo, J. J., & Mannan, S. K. (2012). Alloy 718 for oilfield applications. JOM, 64(2), 265–270.CrossRef
28.
go back to reference Hamdani, F. (2015). Improvement of the corrosion and oxidation resistance of Ni-based alloys by optimizing the chromium content. Ph.D. Thesis, INSA de Lyon (France) and Tohoku University (Japan). Hamdani, F. (2015). Improvement of the corrosion and oxidation resistance of Ni-based alloys by optimizing the chromium content. Ph.D. Thesis, INSA de Lyon (France) and Tohoku University (Japan).
29.
go back to reference Muralidharan, B. G., Shankar, V., & Gill, T. P. S. (1996). Weldability of Inconel 718—A review. Indira Gandhi Centre for Atomic Research. Muralidharan, B. G., Shankar, V., & Gill, T. P. S. (1996). Weldability of Inconel 718—A review. Indira Gandhi Centre for Atomic Research.
30.
go back to reference Clark, D., Bache, M. R., & Whittakerm, M. T. (2008). Shaped metal deposition of a nickel alloy for aero engine applications. Journal of Materials Processing Technology, 203(1–3), 439–448.CrossRef Clark, D., Bache, M. R., & Whittakerm, M. T. (2008). Shaped metal deposition of a nickel alloy for aero engine applications. Journal of Materials Processing Technology, 203(1–3), 439–448.CrossRef
31.
go back to reference Baufeld, B. (2012). Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). Journal of Materials Engineering and Performance, 21(7), 1416–1421.CrossRef Baufeld, B. (2012). Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). Journal of Materials Engineering and Performance, 21(7), 1416–1421.CrossRef
32.
go back to reference Jia, Z., Wan, X., & Guo, D. (2020). Study on microstructure and mechanical properties of Inconel718 components fabricated by UHFP-GTAW technology. Materials Letters, 261, 127006.CrossRef Jia, Z., Wan, X., & Guo, D. (2020). Study on microstructure and mechanical properties of Inconel718 components fabricated by UHFP-GTAW technology. Materials Letters, 261, 127006.CrossRef
33.
go back to reference Xu, X., Ding, J., Ganguly, S., & Williams, S. (2019). Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. Journal of Materials Processing Technology, 265, 201–209.CrossRef Xu, X., Ding, J., Ganguly, S., & Williams, S. (2019). Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. Journal of Materials Processing Technology, 265, 201–209.CrossRef
34.
go back to reference Xu, X., Ganguly, S., Ding, J., Seow, C. E., & Williams, S. (2018). Enhancing mechanical properties of wire+ arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Materials & Design, 160, 1042–1051.CrossRef Xu, X., Ganguly, S., Ding, J., Seow, C. E., & Williams, S. (2018). Enhancing mechanical properties of wire+ arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Materials & Design, 160, 1042–1051.CrossRef
35.
go back to reference Wang, K., Liu, Y., Sun, Z., Lin, J., Lv, Y., & Xu, B. (2020). Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. Journal of Alloys and Compounds, 819, 152936.CrossRef Wang, K., Liu, Y., Sun, Z., Lin, J., Lv, Y., & Xu, B. (2020). Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. Journal of Alloys and Compounds, 819, 152936.CrossRef
36.
go back to reference Zhang, L. N., & Ojo, O. A. (2020). Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. Journal of Alloys and Compounds, 829, 154455.CrossRef Zhang, L. N., & Ojo, O. A. (2020). Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. Journal of Alloys and Compounds, 829, 154455.CrossRef
37.
go back to reference Bhujangrao, T., Veiga, F., Suárez, A., Iriondo, E., & Mata, F. G. (2020). High-temperature mechanical properties of IN718 alloy: Comparison of additive manufactured and wrought samples. Crystals, 10(8), 689.CrossRef Bhujangrao, T., Veiga, F., Suárez, A., Iriondo, E., & Mata, F. G. (2020). High-temperature mechanical properties of IN718 alloy: Comparison of additive manufactured and wrought samples. Crystals, 10(8), 689.CrossRef
38.
go back to reference Kindermann, R. M., Roy, M. J., Morana, R., & Prangnell, P. B. (2020). Process response of Inconel 718 to wire+ arc additive manufacturing with cold metal transfer. Materials & Design, 195, 109031.CrossRef Kindermann, R. M., Roy, M. J., Morana, R., & Prangnell, P. B. (2020). Process response of Inconel 718 to wire+ arc additive manufacturing with cold metal transfer. Materials & Design, 195, 109031.CrossRef
39.
go back to reference Tsurumaki, T., Tsukamoto, S., Chibahara, H., & Sasahara, H. (2019). Precise additive fabrication of wall structure on thin plate end with interlayer temperature monitoring. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13(2), JAMDSM0028.CrossRef Tsurumaki, T., Tsukamoto, S., Chibahara, H., & Sasahara, H. (2019). Precise additive fabrication of wall structure on thin plate end with interlayer temperature monitoring. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13(2), JAMDSM0028.CrossRef
40.
go back to reference Clark, D., Bache, M. R., & Whittaker, M. T. (2010). Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-intert-gas-shaped metal deposition. Metallurgical and Materials Transactions B, 41(6), 1346–1353.CrossRef Clark, D., Bache, M. R., & Whittaker, M. T. (2010). Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-intert-gas-shaped metal deposition. Metallurgical and Materials Transactions B, 41(6), 1346–1353.CrossRef
41.
go back to reference Mohsan, A. U. H., Liu, Z., & Padhy, G. K. (2017). A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions. The International Journal of Advanced Manufacturing Technology, 91(1–4), 107–125.CrossRef Mohsan, A. U. H., Liu, Z., & Padhy, G. K. (2017). A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions. The International Journal of Advanced Manufacturing Technology, 91(1–4), 107–125.CrossRef
42.
go back to reference Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.CrossRef Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.CrossRef
43.
go back to reference Cunningham, C. R., Flynn, J. M., Shokrani, A., Dhokia, V., & Newman, S. T. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672–686.CrossRef Cunningham, C. R., Flynn, J. M., Shokrani, A., Dhokia, V., & Newman, S. T. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672–686.CrossRef
44.
go back to reference Pan, Z., Ding, D., Wu, B., Cuiuri, D., Li, H., & Norrish, J. (2018). Arc welding processes for additive manufacturing: A review. In Transactions on intelligent welding manufacturing (pp. 3–24). Springer.CrossRef Pan, Z., Ding, D., Wu, B., Cuiuri, D., Li, H., & Norrish, J. (2018). Arc welding processes for additive manufacturing: A review. In Transactions on intelligent welding manufacturing (pp. 3–24). Springer.CrossRef
45.
go back to reference Manikandan, S.G.K, Sivakumar, D., & Kamaraj, M. (2019). Welding the Inconel 718 superalloy: Reduction of micro-segregation and laves phases: Elsevier. Manikandan, S.G.K, Sivakumar, D., & Kamaraj, M. (2019). Welding the Inconel 718 superalloy: Reduction of micro-segregation and laves phases: Elsevier.
46.
go back to reference Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., & Sivakumar, D. (2020). Effect of delta current and delta current frequency on microstructure and tensile properties of gas tungsten constricted arc (GTCA)-welded Inconel 718 alloy joints. Metallurgical and Materials Transactions A, 51, 3920–3937.CrossRef Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., & Sivakumar, D. (2020). Effect of delta current and delta current frequency on microstructure and tensile properties of gas tungsten constricted arc (GTCA)-welded Inconel 718 alloy joints. Metallurgical and Materials Transactions A, 51, 3920–3937.CrossRef
47.
go back to reference Bush, D., Bodily, B., Watson, H., Chastka, M., Colvin, E., & Satoh, G. (2017). Arconic development of the ampliforge process. In AeroMat conference and exposition. Bush, D., Bodily, B., Watson, H., Chastka, M., Colvin, E., & Satoh, G. (2017). Arconic development of the ampliforge process. In AeroMat conference and exposition.
48.
go back to reference Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146.CrossRef Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146.CrossRef
49.
go back to reference Yangfan, W., Xizhang, C., & Chuanchu, S. (2019). Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface and Coatings Technology, 374, 116–123.CrossRef Yangfan, W., Xizhang, C., & Chuanchu, S. (2019). Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface and Coatings Technology, 374, 116–123.CrossRef
50.
go back to reference Seow, C. E., Zhang, J., Coules, H. E., Wu, G., Jones, C., Ding, J., & Williams, S. (2020). Effect of crack-like defects on the fracture behaviour of Wire+ Arc Additively Manufactured nickel-base Alloy 718. Additive Manufacturing, 36, 101578.CrossRef Seow, C. E., Zhang, J., Coules, H. E., Wu, G., Jones, C., Ding, J., & Williams, S. (2020). Effect of crack-like defects on the fracture behaviour of Wire+ Arc Additively Manufactured nickel-base Alloy 718. Additive Manufacturing, 36, 101578.CrossRef
51.
go back to reference Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2), 233–253.CrossRef Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2), 233–253.CrossRef
52.
go back to reference Sui, S., Chen, J., Zhang, R., Ming, X., Liu, F., & Lin, X. (2017). The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure. Materials Science and Engineering: A, 688, 480–487.CrossRef Sui, S., Chen, J., Zhang, R., Ming, X., Liu, F., & Lin, X. (2017). The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure. Materials Science and Engineering: A, 688, 480–487.CrossRef
53.
go back to reference Radavich, J. F. (1989). The physical metallurgy of cast and wrought alloy 718. In Superalloys 718 metallurgy and applications. Radavich, J. F. (1989). The physical metallurgy of cast and wrought alloy 718. In Superalloys 718 metallurgy and applications.
54.
go back to reference Radhakrishna, C. H., & Rao, K. P. (1997). The formation and control of Laves phase in superalloy 718 welds. Journal of Materials Science, 32(8), 1977–1984.CrossRef Radhakrishna, C. H., & Rao, K. P. (1997). The formation and control of Laves phase in superalloy 718 welds. Journal of Materials Science, 32(8), 1977–1984.CrossRef
55.
go back to reference Sivaprasad, K., & Raman, S. G. S. (2008). Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metallurgical and Materials Transactions A, 39(9), 2115–2127.CrossRef Sivaprasad, K., & Raman, S. G. S. (2008). Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metallurgical and Materials Transactions A, 39(9), 2115–2127.CrossRef
56.
go back to reference Song, K., Yu, K., Lin, X., Chen, J., Yang, H., & Huang, W. (2015). Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718. Acta Metallurgica Sinica, 51(8), 935–942. Song, K., Yu, K., Lin, X., Chen, J., Yang, H., & Huang, W. (2015). Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718. Acta Metallurgica Sinica, 51(8), 935–942.
57.
go back to reference Giggins, C. S., & Pettit, F. S. (1971). Oxidation of Ni-Cr-Al alloys between 1000° and 1200°C. Journal of the Electrochemical Society, 118(11), 1782–1790.CrossRef Giggins, C. S., & Pettit, F. S. (1971). Oxidation of Ni-Cr-Al alloys between 1000° and 1200°C. Journal of the Electrochemical Society, 118(11), 1782–1790.CrossRef
58.
go back to reference Sanviemvongsak, T., Monceau, D., Desgranges, C., & Macquaire, B. (2020). Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing. Corrosion Science, 170, 108684.CrossRef Sanviemvongsak, T., Monceau, D., Desgranges, C., & Macquaire, B. (2020). Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing. Corrosion Science, 170, 108684.CrossRef
59.
go back to reference Vayyala, A., Povstugar, I., Galiullin, T., Naumenko, D., Quadakkers, W. J., Hattendorf, H., & Mayer, J. (2019). Effect of Nb addition on oxidation mechanisms of high Cr ferritic steel in Ar–H2–H2O. Oxidation of Metals, 92(5–6), 471–491.CrossRef Vayyala, A., Povstugar, I., Galiullin, T., Naumenko, D., Quadakkers, W. J., Hattendorf, H., & Mayer, J. (2019). Effect of Nb addition on oxidation mechanisms of high Cr ferritic steel in Ar–H2–H2O. Oxidation of Metals, 92(5–6), 471–491.CrossRef
60.
go back to reference Sanviemvongsak, T., Monceau, D., & Macquaire, B. (2018). High temperature oxidation of IN 718 manufactured by laser beam melting and electron beam melting: Effect of surface topography. Corrosion Science, 141, 127–145.CrossRef Sanviemvongsak, T., Monceau, D., & Macquaire, B. (2018). High temperature oxidation of IN 718 manufactured by laser beam melting and electron beam melting: Effect of surface topography. Corrosion Science, 141, 127–145.CrossRef
61.
go back to reference Adria, B.S. (2020). Oxidation resistance of additively manufactured Inconel 718 for gas turbine applications. Master’s Thesis, Carleton University. Adria, B.S. (2020). Oxidation resistance of additively manufactured Inconel 718 for gas turbine applications. Master’s Thesis, Carleton University.
63.
go back to reference Snbacka, N. (2013). On arc efficiency in gas tungsten arc welding. Soldagem & Inspeção, 18(4), 380–390.CrossRef Snbacka, N. (2013). On arc efficiency in gas tungsten arc welding. Soldagem & Inspeção, 18(4), 380–390.CrossRef
64.
go back to reference Li, Z., Chen, J., Sui, S., Zhong, C., Lu, X., & Lin, X. (2020). The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Additive Manufacturing, 31, 100941.CrossRef Li, Z., Chen, J., Sui, S., Zhong, C., Lu, X., & Lin, X. (2020). The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Additive Manufacturing, 31, 100941.CrossRef
65.
go back to reference Geels, K., Fowler, D. B., Kopp, W.-U., & Rückert, M. (2007). Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing. ASTM International.CrossRef Geels, K., Fowler, D. B., Kopp, W.-U., & Rückert, M. (2007). Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing. ASTM International.CrossRef
70.
go back to reference Mitchell, A. (2010). Primary carbides in Alloy 718. Superalloys 718 and derivatives. Mitchell, A. (2010). Primary carbides in Alloy 718. Superalloys 718 and derivatives.
71.
go back to reference Mitchell, A. (2005). The precipitation of primary carbides in IN 718 and its relation to solidification conditions. Superalloys 718, 625, 706 and derivatives. Mitchell, A. (2005). The precipitation of primary carbides in IN 718 and its relation to solidification conditions. Superalloys 718, 625, 706 and derivatives.
72.
go back to reference Mitchell, A., Schmalz, A. J., Schvezov, C., & Cockcroft, S. L. (1994). The precipitation of primary carbides in alloy 718. Superalloys 718, 625, 706 and various derivatives. Mitchell, A., Schmalz, A. J., Schvezov, C., & Cockcroft, S. L. (1994). The precipitation of primary carbides in alloy 718. Superalloys 718, 625, 706 and various derivatives.
73.
go back to reference Cockcroft, S. L., Degawa, T., Mitchell, A., Tripp, D. W., & Schmalz, A. (1992). Inclusion precipitation in superalloys. Superalloys 1992. Cockcroft, S. L., Degawa, T., Mitchell, A., Tripp, D. W., & Schmalz, A. (1992). Inclusion precipitation in superalloys. Superalloys 1992.
74.
75.
go back to reference Wu, B., Ding, D., Pan, Z., Cuiuri, D., Li, H., Han, J., & Fei, Z. (2017). Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. Journal of Materials Processing Technology, 250, 304–312.CrossRef Wu, B., Ding, D., Pan, Z., Cuiuri, D., Li, H., Han, J., & Fei, Z. (2017). Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. Journal of Materials Processing Technology, 250, 304–312.CrossRef
76.
go back to reference Yildiz, A. S., Davut, K., Koc, B., & Yilmaz, O. (2020). Wire arc additive manufacturing of high-strength low alloy steels: Study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology, 108(11), 3391–3404.CrossRef Yildiz, A. S., Davut, K., Koc, B., & Yilmaz, O. (2020). Wire arc additive manufacturing of high-strength low alloy steels: Study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology, 108(11), 3391–3404.CrossRef
77.
go back to reference Nursyifaulkhair, D., Park, N., Baek, E. R., & Lee, J.-b. (2019). Effect of process parameters on the formation of lack of fusion in directed energy deposition of Ti-6Al-4V alloy. Journal of Welding and Joining., 37(6), 579–584.CrossRef Nursyifaulkhair, D., Park, N., Baek, E. R., & Lee, J.-b. (2019). Effect of process parameters on the formation of lack of fusion in directed energy deposition of Ti-6Al-4V alloy. Journal of Welding and Joining., 37(6), 579–584.CrossRef
78.
go back to reference Lampman, S. (1997). Weld solidification. In Weld integrity and performance (pp. 3–21). ASM International.CrossRef Lampman, S. (1997). Weld solidification. In Weld integrity and performance (pp. 3–21). ASM International.CrossRef
79.
go back to reference Lippold, J. C. (2015). Welding metallurgy principles. In Welding metallurgy and weldability (pp. 9–83). Wiley Online Library.CrossRef Lippold, J. C. (2015). Welding metallurgy principles. In Welding metallurgy and weldability (pp. 9–83). Wiley Online Library.CrossRef
80.
go back to reference Barrett, C. S., & Massalski, T. B. (1966). Structure of metals: Crystallographic methods, principles, and data. McGraw-Hill. Barrett, C. S., & Massalski, T. B. (1966). Structure of metals: Crystallographic methods, principles, and data. McGraw-Hill.
81.
go back to reference Gao, J., Jie, W., Yuan, Y., Wang, T., Zha, G., & Tong, J. (2011). Dependence of film texture on substrate and growth conditions for CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5), 051507.CrossRef Gao, J., Jie, W., Yuan, Y., Wang, T., Zha, G., & Tong, J. (2011). Dependence of film texture on substrate and growth conditions for CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5), 051507.CrossRef
82.
go back to reference Knorovsky, G. A., Cieslak, M. J., Headley, T. J., Romig, A. D., & Hammetter, W. F. (1989). Inconel 718: A solidification diagram. Metallurgical Transactions A, 20(10), 2149–2158.CrossRef Knorovsky, G. A., Cieslak, M. J., Headley, T. J., Romig, A. D., & Hammetter, W. F. (1989). Inconel 718: A solidification diagram. Metallurgical Transactions A, 20(10), 2149–2158.CrossRef
83.
go back to reference Chalmers, B. (1970). Principles of solidification. In Applied solid state physics (pp. 161–170). Springer.CrossRef Chalmers, B. (1970). Principles of solidification. In Applied solid state physics (pp. 161–170). Springer.CrossRef
84.
go back to reference Stefanescu, D. M., & Ruxanda, R. (2004). Fundamentals of solidification. In ASM handbook (Metallography and microstructures) (Vol. 9, pp. 71–92). ASM International. Stefanescu, D. M., & Ruxanda, R. (2004). Fundamentals of solidification. In ASM handbook (Metallography and microstructures) (Vol. 9, pp. 71–92). ASM International.
85.
go back to reference Kurz, W., & Fisher, D. J. (1984). Fundamentals of solidification. Trans Tech Publications. Kurz, W., & Fisher, D. J. (1984). Fundamentals of solidification. Trans Tech Publications.
86.
go back to reference David, S. A., & Vitek, J. M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews, 34(1), 213–245.CrossRef David, S. A., & Vitek, J. M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews, 34(1), 213–245.CrossRef
87.
go back to reference Antonsson, T., & Fredriksson, H. (2005). The effect of cooling rate on the solidification of INCONEL 718. Metallurgical and Materials Transactions B, 36(1), 85–96.CrossRef Antonsson, T., & Fredriksson, H. (2005). The effect of cooling rate on the solidification of INCONEL 718. Metallurgical and Materials Transactions B, 36(1), 85–96.CrossRef
88.
go back to reference Mondol, A., Gupta, R., Das, S., & Dutta, T. (2018). An insight into Newton’s cooling law using fractional calculus. Journal of Applied Physics, 123(6), 064901.CrossRef Mondol, A., Gupta, R., Das, S., & Dutta, T. (2018). An insight into Newton’s cooling law using fractional calculus. Journal of Applied Physics, 123(6), 064901.CrossRef
91.
go back to reference Young, D. J. (2008). The nature of high temperature oxidation. In High temperature oxidation and corrosion of metals (pp. 1–27). Elsevier. Young, D. J. (2008). The nature of high temperature oxidation. In High temperature oxidation and corrosion of metals (pp. 1–27). Elsevier.
92.
go back to reference Kang, Y.-J., Yang, S., Kim, Y.-K., AlMangour, B., & Lee, K.-A. (2019). Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy. Corrosion Science, 158, 108082.CrossRef Kang, Y.-J., Yang, S., Kim, Y.-K., AlMangour, B., & Lee, K.-A. (2019). Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy. Corrosion Science, 158, 108082.CrossRef
93.
go back to reference Calandri, M., Manfredi, D., Calignano, F., Ambrosio, E. P., Biamino, S., Lupoi, R., & Ugues, D. (2018). Solution treatment study of inconel 718 produced by SLM additive technique in view of the oxidation resistance. Advanced Engineering Materials, 20(11), 1800351.CrossRef Calandri, M., Manfredi, D., Calignano, F., Ambrosio, E. P., Biamino, S., Lupoi, R., & Ugues, D. (2018). Solution treatment study of inconel 718 produced by SLM additive technique in view of the oxidation resistance. Advanced Engineering Materials, 20(11), 1800351.CrossRef
94.
go back to reference Li, L., Gong, X., Ye, X., Teng, J., Nie, Y., Li, Y., & Lei, Q. (2018). Influence of building direction on the oxidation behavior of inconel 718 alloy fabricated by additive manufacture of electron beam melting. Materials, 11(12), 2549.CrossRef Li, L., Gong, X., Ye, X., Teng, J., Nie, Y., Li, Y., & Lei, Q. (2018). Influence of building direction on the oxidation behavior of inconel 718 alloy fabricated by additive manufacture of electron beam melting. Materials, 11(12), 2549.CrossRef
95.
go back to reference Cao, G., Li, Z., Tang, J., Sun, X., & Liu, Z. (2016). Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel. High Temperature Materials and Processes, 36(9), 927–935.CrossRef Cao, G., Li, Z., Tang, J., Sun, X., & Liu, Z. (2016). Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel. High Temperature Materials and Processes, 36(9), 927–935.CrossRef
96.
go back to reference Evans, H. E. (1995). Stress effects in high temperature oxidation of metals. International Materials Reviews, 40(1), 1–40.CrossRef Evans, H. E. (1995). Stress effects in high temperature oxidation of metals. International Materials Reviews, 40(1), 1–40.CrossRef
97.
go back to reference Bose, S. (2017). Oxidation. In High temperature coatings (pp. 45–71). Butterworth-Heinemann. Bose, S. (2017). Oxidation. In High temperature coatings (pp. 45–71). Butterworth-Heinemann.
98.
go back to reference Elorz, J. A. P.-S., González, D. F., & Verdeja, L. F. (2019). Structural materials: Metals. In Structural materials: Properties and selection (pp. 21–30). Springer.CrossRef Elorz, J. A. P.-S., González, D. F., & Verdeja, L. F. (2019). Structural materials: Metals. In Structural materials: Properties and selection (pp. 21–30). Springer.CrossRef
99.
go back to reference Abe, F., Araki, H., Yoshida, H., & Okada, M. (1987). The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800°C. Oxidation of Metals, 27(1), 21–36.CrossRef Abe, F., Araki, H., Yoshida, H., & Okada, M. (1987). The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800°C. Oxidation of Metals, 27(1), 21–36.CrossRef
100.
go back to reference Kassim, S. A., Thor, J. A., Seman, A. A., & Abdullah, T. K. (2020). High temperature corrosion of Hastelloy C22 in molten alkali salts: The effect of pre-oxidation treatment. Corrosion Science, 173, 108761.CrossRef Kassim, S. A., Thor, J. A., Seman, A. A., & Abdullah, T. K. (2020). High temperature corrosion of Hastelloy C22 in molten alkali salts: The effect of pre-oxidation treatment. Corrosion Science, 173, 108761.CrossRef
Metadata
Title
Application of Wire Arc Additive Manufacturing for Inconel 718 Superalloy
Authors
G. K. Sujan
Huijun Li
Zengxi Pan
Daniel Liang
Nazmul Alam
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-91873-6_15

Premium Partner