Skip to main content
Top

2022 | OriginalPaper | Chapter

10. Applications of 1D Mesoporous Inorganic Nanomaterials as Sensors

Authors : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Published in: One-Dimensional Mesoporous Inorganic Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

At present, it is a hot topic to develop chemical sensors that have wide application potential (Kong et al. in Science 287:622–625, 2000;Kreno et al. in Chem Rev 112:1105–1125, 2012;). For enhancing the sensing properties, the nanostructures-based sensor devices are extensively studied since they have greater surface areas than the traditional bulks (Robinson et al. in Nano Lett 6:1747–1751, 2006;Huang and Choi in Sens Actuators B 122:659–671, 2007;Yavari and Koratkar in J Phys Chem Lett 3:1746–1753, 2012;).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRef J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000)CrossRef
2.
go back to reference L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic framework materials as chemical sensors. Chem Rev. 112(2), 1105–1125 (2012)CrossRef L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-Organic framework materials as chemical sensors. Chem Rev. 112(2), 1105–1125 (2012)CrossRef
3.
go back to reference J.A. Robinson, E.S. Snow, ŞC. Bǎdescu, T.L. Reinecke, F.K. Perkins, Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6(8), 1747–1751 (2006)CrossRef J.A. Robinson, E.S. Snow, ŞC. Bǎdescu, T.L. Reinecke, F.K. Perkins, Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6(8), 1747–1751 (2006)CrossRef
4.
go back to reference X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122(2), 659–671 (2007)CrossRef X.-J. Huang, Y.-K. Choi, Chemical sensors based on nanostructured materials. Sens. Actuators B 122(2), 659–671 (2007)CrossRef
5.
go back to reference F. Yavari, N. Koratkar, Graphene-Based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef F. Yavari, N. Koratkar, Graphene-Based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef
6.
go back to reference N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal Surv. Asia 7(1), 63–75 (2003)CrossRef N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal Surv. Asia 7(1), 63–75 (2003)CrossRef
7.
go back to reference M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012)CrossRef M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6), 7207–7258 (2012)CrossRef
8.
go back to reference A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with pd catalyst particles. Nano. Lett. 5(4), 667–673 (2005)CrossRef A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with pd catalyst particles. Nano. Lett. 5(4), 667–673 (2005)CrossRef
9.
go back to reference X.-L. Li, T.-J. Lou, X.-M. Sun, Y.-D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorg Chem 43(17), 5442–5449 (2004)CrossRef X.-L. Li, T.-J. Lou, X.-M. Sun, Y.-D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorg Chem 43(17), 5442–5449 (2004)CrossRef
10.
go back to reference S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) Prepared via continuous hydrothermal flow synthesis. Langmuir 28(3), 1879–1885 (2012)CrossRef S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) Prepared via continuous hydrothermal flow synthesis. Langmuir 28(3), 1879–1885 (2012)CrossRef
11.
go back to reference S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B 149(1), 28–33 (2010)CrossRef S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuators B 149(1), 28–33 (2010)CrossRef
12.
go back to reference A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Edn. 49(42), 7632–7659 (2010)CrossRef A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Edn. 49(42), 7632–7659 (2010)CrossRef
13.
go back to reference X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens Actuators B 177, 178–195 (2013)CrossRef X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens Actuators B 177, 178–195 (2013)CrossRef
14.
go back to reference T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013)CrossRef T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Mesoporous materials as gas sensors. Chem. Soc. Rev. 42(9), 4036–4053 (2013)CrossRef
15.
go back to reference D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919–1924 (2004)CrossRef D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4(10), 1919–1924 (2004)CrossRef
16.
go back to reference A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires. Cryst. Growth Des. 7(12), 2500–3250 (2007)CrossRef A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires. Cryst. Growth Des. 7(12), 2500–3250 (2007)CrossRef
17.
go back to reference T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater 19(4), 653–661 (2009)CrossRef T. Waitz, T. Wagner, T. Sauerwald, C.-D. Kohl, M. Tiemann, Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater 19(4), 653–661 (2009)CrossRef
18.
go back to reference J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater Lett. 75, 126–129 (2012)CrossRef J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater Lett. 75, 126–129 (2012)CrossRef
19.
go back to reference L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens Actuators B 147(2), 531–538 (2010)CrossRef L. Xu, B. Dong, Y. Wang, X. Bai, Q. Liu, H. Song, Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires. Sens Actuators B 147(2), 531–538 (2010)CrossRef
20.
go back to reference H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. Cryst. Eng. Comm. 16(38), 9116–9124 (2014)CrossRef H. Wu, K. Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, Electrospinning of mesoporous p-type In2O3/TiO2 composite nanofibers for enhancing NOx gas sensing properties at room temperature. Cryst. Eng. Comm. 16(38), 9116–9124 (2014)CrossRef
21.
go back to reference J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens Actuators B 255, 1819–1830 (2018)CrossRef J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens Actuators B 255, 1819–1830 (2018)CrossRef
22.
go back to reference J, Gao, L. Wang, K. Kan, S. Xu, L. Jing, S. Liu, P. Shen, L. Li, K. Shi, One-step synthesis of mesoporous Al2O3–In2O3 nanofibers with remarkable gas-sensing performance to NOx at room temperature. J. Mater. Chem. A 2(4), 949–956 J, Gao, L. Wang, K. Kan, S. Xu, L. Jing, S. Liu, P. Shen, L. Li, K. Shi, One-step synthesis of mesoporous Al2O3–In2O3 nanofibers with remarkable gas-sensing performance to NOx at room temperature. J. Mater. Chem. A 2(4), 949–956
23.
go back to reference H. Yang, S. Wang, Y. Yang, Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. Cryst. Eng. Comm. 14(3), 1135–1142 (2012)CrossRef H. Yang, S. Wang, Y. Yang, Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. Cryst. Eng. Comm. 14(3), 1135–1142 (2012)CrossRef
24.
go back to reference J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu, Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B 191, 806–812 (2014)CrossRef J. Zhao, T. Yang, Y. Liu, Z. Wang, X. Li, Y. Sun, Y. Du, Y. Li, G. Lu, Enhancement of NO2 gas sensing response based on ordered mesoporous Fe-doped In2O3. Sens Actuators B 191, 806–812 (2014)CrossRef
25.
go back to reference Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, J. Zheng, T. Zhang, Y. Wang, G. Lu, Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B 241, 806–813 (2017)CrossRef Q. Yang, Y. Wang, J. Liu, J. Liu, Y. Gao, P. Sun, J. Zheng, T. Zhang, Y. Wang, G. Lu, Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens Actuators B 241, 806–813 (2017)CrossRef
26.
go back to reference Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang, N. Barsan, Pt- In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators B 260, 927–936 (2018)CrossRef Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang, N. Barsan, Pt- In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuators B 260, 927–936 (2018)CrossRef
27.
go back to reference L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015)CrossRef L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015)CrossRef
28.
go back to reference X. Wang, J. Zhang, Y. He, L. Wang, L. Liu, H. Wang, X. Guo, H. Lian, Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem Phys Lett 658, 319–323 (2016)CrossRef X. Wang, J. Zhang, Y. He, L. Wang, L. Liu, H. Wang, X. Guo, H. Lian, Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem Phys Lett 658, 319–323 (2016)CrossRef
29.
go back to reference W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman, L. Zhu, Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B 298, 126871 W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman, L. Zhu, Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B 298, 126871
30.
go back to reference X. Li, D. Li, J. Xu, Y. Han, H. Jin, B. Hong, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 69, 38–43 (2017)CrossRef X. Li, D. Li, J. Xu, Y. Han, H. Jin, B. Hong, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 69, 38–43 (2017)CrossRef
31.
go back to reference X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)CrossRef X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)CrossRef
32.
go back to reference H. Chen, G.-D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuators B 240, 689–696 (2017)CrossRef H. Chen, G.-D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M=Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuators B 240, 689–696 (2017)CrossRef
33.
go back to reference J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501 J. Wei, X. Li, Y. Han, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, X. Wang, Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping. Nanotechnology 29(24), 245501
34.
go back to reference J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multi-junctions nanofibers at room temperature. Sens. Actuators B 255, 1819–1830 (2018)CrossRef J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multi-junctions nanofibers at room temperature. Sens. Actuators B 255, 1819–1830 (2018)CrossRef
35.
go back to reference P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B 270, 158–166 (2018)CrossRef P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B 270, 158–166 (2018)CrossRef
36.
go back to reference L. Wang, P. Gao, G. Zhang, G. Chen, Y. Chen, Y. Wang, Bao D (2012) Synthesis of mesoporous MoO3 nanoribbons through a multi-molybdate coordination-polymer-precursor route. Eur. J. Inorg Chem. 35, 5831–5836 (2012)CrossRef L. Wang, P. Gao, G. Zhang, G. Chen, Y. Chen, Y. Wang, Bao D (2012) Synthesis of mesoporous MoO3 nanoribbons through a multi-molybdate coordination-polymer-precursor route. Eur. J. Inorg Chem. 35, 5831–5836 (2012)CrossRef
37.
go back to reference X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, S.H. Yan, T. Wang, Facile synthesis of SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol. Mater. Lett. 143, 55–59 (2015)CrossRef X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, S.H. Yan, T. Wang, Facile synthesis of SnO2 mesoporous tubular nanostructure with high sensitivity to ethanol. Mater. Lett. 143, 55–59 (2015)CrossRef
38.
go back to reference S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H.L. Tuller, I.-D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)CrossRef S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H.L. Tuller, I.-D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)CrossRef
39.
go back to reference C. Balamurugan, D.W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 192, 414–422 (2014)CrossRef C. Balamurugan, D.W. Lee, A selective NH3 gas sensor based on mesoporous p-type NiV2O6 semiconducting nanorods synthesized using solution method. Sens. Actuators B 192, 414–422 (2014)CrossRef
40.
go back to reference H. Wu, L. Wang, J. Zhou, J. Gao, G. Zhang, S. Xu, Y. Xie, L. Li, K. Shi, Facile preparation of porous In 2 TiO 5 –rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature. J. Colloid Sci. 466, 72–79 (2016)CrossRef H. Wu, L. Wang, J. Zhou, J. Gao, G. Zhang, S. Xu, Y. Xie, L. Li, K. Shi, Facile preparation of porous In 2 TiO 5 –rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature. J. Colloid Sci. 466, 72–79 (2016)CrossRef
41.
go back to reference S. Sotiropoulou, N.A. Chaniotakis, Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375(1), 103–105 (2003)CrossRef S. Sotiropoulou, N.A. Chaniotakis, Carbon nanotube array-based biosensor. Anal. Bioanal. Chem. 375(1), 103–105 (2003)CrossRef
42.
go back to reference G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749, 1–15 (2012)CrossRef G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749, 1–15 (2012)CrossRef
43.
go back to reference V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78(15), 5538–5542 (2006)CrossRef V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor. Anal. Chem. 78(15), 5538–5542 (2006)CrossRef
44.
go back to reference C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens Bioelectron. 66, 350–355 (2015)CrossRef C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens Bioelectron. 66, 350–355 (2015)CrossRef
45.
go back to reference T.C. Gokoglan, S. Soylemez, M. Kesik, I.B. Dogru, O. Turel, R. Yuksel, H.E. Unalan, L. Toppare, A novel approach for the fabrication of a flexible glucose biosensor: the combination of vertically aligned CNTs and a conjugated polymer. Food Chem 220, 299–305 (2017)CrossRef T.C. Gokoglan, S. Soylemez, M. Kesik, I.B. Dogru, O. Turel, R. Yuksel, H.E. Unalan, L. Toppare, A novel approach for the fabrication of a flexible glucose biosensor: the combination of vertically aligned CNTs and a conjugated polymer. Food Chem 220, 299–305 (2017)CrossRef
46.
go back to reference M. Malmqvist, Biospecific interaction analysis using biosensor technology. Nature 361(6408), 186–187 (1993)CrossRef M. Malmqvist, Biospecific interaction analysis using biosensor technology. Nature 361(6408), 186–187 (1993)CrossRef
47.
go back to reference K. Reder-Christ, G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments. Sensors 11(10), 9450 (2011)CrossRef K. Reder-Christ, G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments. Sensors 11(10), 9450 (2011)CrossRef
48.
go back to reference N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review. Appl. Biochem. Biotech. 175(6), 3093–3119 (2015)CrossRef N. Verma, A. Bhardwaj, Biosensor technology for pesticides-a review. Appl. Biochem. Biotech. 175(6), 3093–3119 (2015)CrossRef
49.
go back to reference X.-L. Luo, J.-J. Xu, J.-L. Wang, H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)CrossRef X.-L. Luo, J.-J. Xu, J.-L. Wang, H.-Y. Chen, Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem. Commun. 16, 2169–2171 (2005)CrossRef
50.
go back to reference K. Wang, Q. Liu, Q.-M. Guan, J. Wu, H.-N. Li, J.-J. Yan, Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron. 26(5), 2252–2257 (2011)CrossRef K. Wang, Q. Liu, Q.-M. Guan, J. Wu, H.-N. Li, J.-J. Yan, Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron. 26(5), 2252–2257 (2011)CrossRef
51.
go back to reference M. Zhao, Z. Li, Z. Han, K. Wang, Y. Zhou, J. Huang, Z. Ye, Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectron. 49, 318–322 (2013)CrossRef M. Zhao, Z. Li, Z. Han, K. Wang, Y. Zhou, J. Huang, Z. Ye, Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens Bioelectron. 49, 318–322 (2013)CrossRef
52.
go back to reference G. Saher, B. Brügger, C. Lappesiefke, W. Möbius, R. Tozawa, M.C. Wehr, F. Wieland, S. Ishibashi, K.A. Nave, High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8(4), 468–475 (2005)CrossRef G. Saher, B. Brügger, C. Lappesiefke, W. Möbius, R. Tozawa, M.C. Wehr, F. Wieland, S. Ishibashi, K.A. Nave, High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8(4), 468–475 (2005)CrossRef
53.
go back to reference J.L. Goldstein, R.A. DeBose-Boyd, M.S. Brown, Protein sensors for membrane sterols. Cell 124(1), 35–46 (2006)CrossRef J.L. Goldstein, R.A. DeBose-Boyd, M.S. Brown, Protein sensors for membrane sterols. Cell 124(1), 35–46 (2006)CrossRef
54.
go back to reference R.E. Tanzi, L. Bertram, New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184 (2001)CrossRef R.E. Tanzi, L. Bertram, New frontiers in Alzheimer’s disease genetics. Neuron 32, 181–184 (2001)CrossRef
55.
go back to reference S. Wahrle, P. Das, A.C. Nyborg, C. McLendon, M. Shoji, T. Kawarabayashi, L.H. Younkin, S.G. Younkin, T.E. Golde, Cholesterol-Dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9(1), 11–23 (2002)CrossRef S. Wahrle, P. Das, A.C. Nyborg, C. McLendon, M. Shoji, T. Kawarabayashi, L.H. Younkin, S.G. Younkin, T.E. Golde, Cholesterol-Dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis. 9(1), 11–23 (2002)CrossRef
56.
go back to reference K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Appl Mater Interfaces 6(4), 2516–2527 (2014)CrossRef K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Appl Mater Interfaces 6(4), 2516–2527 (2014)CrossRef
57.
go back to reference M.A. Ali, K. Mondal, C. Singh, B. Dhar Malhotra, A. Sharma, Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7(16), 7234–7245 (2015)CrossRef M.A. Ali, K. Mondal, C. Singh, B. Dhar Malhotra, A. Sharma, Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale 7(16), 7234–7245 (2015)CrossRef
Metadata
Title
Applications of 1D Mesoporous Inorganic Nanomaterials as Sensors
Authors
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_10