Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Applications of 1D Mesoporous Inorganic Nanomaterials in Photocatalysis

Authors : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Published in: One-Dimensional Mesoporous Inorganic Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fujishima and Honda first adopted the photoelectrochemical water splitting approach to prepare the TiO2 electrode (Fujishima and Honda in Nature 238:5358–5539, 1972). Since then, semiconductor photocatalysis has been recognized as a favorable method to manage the problem of energy and environmental crisis (Mills and Hunte in J Photochem Photobiol A 108:1–35, 1997; Fujishima et al. in J Photochem Photobiol C 1:1–21, 2000; Robert and Malato in Sci Total Environ 291:85–97, 2002; Wang et al. in Energy Environ Sci 7:2831–2867, 2014). When irradiation under light with energy ≥ its band gap, electrons in the semiconductor are excited from valence band (VB) to conduction band (CB), as a result, holes are left in VB (Chen et al. in Chem Rev 110:6503–6570, 2010).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Fujishima, K. Honda, Electrochemical photocatalysis of water at semiconductor electrode. Nature 238, 5358–5539 (1972)CrossRef A. Fujishima, K. Honda, Electrochemical photocatalysis of water at semiconductor electrode. Nature 238, 5358–5539 (1972)CrossRef
2.
go back to reference A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis. J. Photochem Photobiol A 108(1), 1–35 (1997)CrossRef A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis. J. Photochem Photobiol A 108(1), 1–35 (1997)CrossRef
3.
go back to reference A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem Photobiol C 1(1), 1–21 (2000)CrossRef A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem Photobiol C 1(1), 1–21 (2000)CrossRef
4.
go back to reference D. Robert, S. Malato, Solar photocatalysis: a clean process for water detoxification. Sci. Total Environ. 291(1), 85–97 (2002)CrossRef D. Robert, S. Malato, Solar photocatalysis: a clean process for water detoxification. Sci. Total Environ. 291(1), 85–97 (2002)CrossRef
5.
go back to reference C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 7(9), 2831–2867 (2014)CrossRef C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 7(9), 2831–2867 (2014)CrossRef
6.
go back to reference X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110(11), 6503–6570 (2010)CrossRef X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 110(11), 6503–6570 (2010)CrossRef
7.
go back to reference A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22(6), 417–425 (1993)CrossRef A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22(6), 417–425 (1993)CrossRef
8.
go back to reference H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014)CrossRef H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014)CrossRef
9.
go back to reference H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129(27), 8406–8407 (2007)CrossRef H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129(27), 8406–8407 (2007)CrossRef
10.
go back to reference X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45(9), 2603–2636 (2016)CrossRef X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45(9), 2603–2636 (2016)CrossRef
11.
go back to reference G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.-H. Park, A. Vinu, Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew. Chem. Int. Ed. 56(29), 8481–8485 (2017)CrossRef G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon, K. Al-Bahily, T. Mori, D.-H. Park, A. Vinu, Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew. Chem. Int. Ed. 56(29), 8481–8485 (2017)CrossRef
12.
go back to reference A.F. Heyduk, D.G. Nocera, Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293(5535), 1639–1641 (2001)CrossRef A.F. Heyduk, D.G. Nocera, Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst. Science 293(5535), 1639–1641 (2001)CrossRef
13.
go back to reference M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustainable Energy Rev. 11(3), 401–425 (2007)CrossRef M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustainable Energy Rev. 11(3), 401–425 (2007)CrossRef
14.
go back to reference A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, M. McClendon, A.R. Koltonow, P.S. SamuelAmanda, D.J. Kiebala, M.R. Wasielewski, S.I. Stupp, Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6(11), 964–970 (2014)CrossRef A.S. Weingarten, R.V. Kazantsev, L.C. Palmer, M. McClendon, A.R. Koltonow, P.S. SamuelAmanda, D.J. Kiebala, M.R. Wasielewski, S.I. Stupp, Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6(11), 964–970 (2014)CrossRef
15.
go back to reference K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010)CrossRef K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010)CrossRef
16.
go back to reference X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–775 (2011)CrossRef X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018), 746–775 (2011)CrossRef
17.
go back to reference J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015)CrossRef J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.-T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970–974 (2015)CrossRef
18.
go back to reference S.K. Choi, S. Kim, S.K. Lim, H. Park, Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J. Phys. Chem. C 114(39), 16475–16480 (2010)CrossRef S.K. Choi, S. Kim, S.K. Lim, H. Park, Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J. Phys. Chem. C 114(39), 16475–16480 (2010)CrossRef
19.
go back to reference B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, S. Xie, D. Fang, Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano. Res. 9(3), 886–898 (2016)CrossRef B. Wang, Y. Wang, Y. Lei, N. Wu, Y. Gou, C. Han, S. Xie, D. Fang, Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano. Res. 9(3), 886–898 (2016)CrossRef
20.
go back to reference H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136(48), 16716–16719 (2014)CrossRef H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136(48), 16716–16719 (2014)CrossRef
21.
go back to reference H. Hou, M. Shang, L. Wang, W. Li, B. Tang, W. Yang, Efficient photocatalytic activities of TiO2 hollow fibers with mixed phases and mesoporous walls. Sci. Rep. 5, 15228 (2015)CrossRef H. Hou, M. Shang, L. Wang, W. Li, B. Tang, W. Yang, Efficient photocatalytic activities of TiO2 hollow fibers with mixed phases and mesoporous walls. Sci. Rep. 5, 15228 (2015)CrossRef
22.
go back to reference X. Ren, P. Ying, Z. Yang, M. Shang, H. Hou, F. Gao, Foaming-assisted electrospinning of large-pore mesoporous ZnO nanofibers with tailored structures and enhanced photocatalytic activity. RSC Adv. 5(21), 16361–16367 (2015)CrossRef X. Ren, P. Ying, Z. Yang, M. Shang, H. Hou, F. Gao, Foaming-assisted electrospinning of large-pore mesoporous ZnO nanofibers with tailored structures and enhanced photocatalytic activity. RSC Adv. 5(21), 16361–16367 (2015)CrossRef
23.
go back to reference H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 4(17), 6276–6281 (2016)CrossRef H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 4(17), 6276–6281 (2016)CrossRef
24.
go back to reference X. Ren, H. Hou, Z. Liu, F. Gao, J. Zheng, L. Wang, W. Li, P. Ying, W. Yang, T. Wu, Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO nanofibers. Small 12(29), 4007–4017 (2016)CrossRef X. Ren, H. Hou, Z. Liu, F. Gao, J. Zheng, L. Wang, W. Li, P. Ying, W. Yang, T. Wu, Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO nanofibers. Small 12(29), 4007–4017 (2016)CrossRef
25.
go back to reference H. Hou, M. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang, W. Yang, Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl. Mater Interfaces 8(31), 20128–20137 (2016)CrossRef H. Hou, M. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang, W. Yang, Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl. Mater Interfaces 8(31), 20128–20137 (2016)CrossRef
26.
go back to reference H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Q. Liu, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci. Mater. Electron. 28(4), 3796–3805 (2016) H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Q. Liu, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci. Mater. Electron. 28(4), 3796–3805 (2016)
27.
go back to reference M. Shang, H. Hou, F. Gao, L. Wang, W. Yang, Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution. RSC Adv. 7(48), 30051–30059 (2017)CrossRef M. Shang, H. Hou, F. Gao, L. Wang, W. Yang, Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution. RSC Adv. 7(48), 30051–30059 (2017)CrossRef
28.
go back to reference Y. Liu, F. Gao, L. Wang, W. Yang, X. He, H. Hou, Fabrication of CdS-decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production. J. Mater Sci. Mater Electron. 30(2), 1487–1495 (2018)CrossRef Y. Liu, F. Gao, L. Wang, W. Yang, X. He, H. Hou, Fabrication of CdS-decorated mesoporous SiC hollow nanofibers for efficient visible-light-driven photocatalytic hydrogen production. J. Mater Sci. Mater Electron. 30(2), 1487–1495 (2018)CrossRef
29.
go back to reference Y. Yang, Y. Zhu, X. Ye, K. Zhou, P. Li, H. Chen, Y. Dan, W. Yang, H. Hou, One-dimensional mesoporous anatase-TiO2/Rutile-TiO2/ZnTiO3 triphase heterojunction with boosted photocatalytic hydrogen production activity. Catal. Lett. 151, 359–369 (2021) Y. Yang, Y. Zhu, X. Ye, K. Zhou, P. Li, H. Chen, Y. Dan, W. Yang, H. Hou, One-dimensional mesoporous anatase-TiO2/Rutile-TiO2/ZnTiO3 triphase heterojunction with boosted photocatalytic hydrogen production activity. Catal. Lett. 151, 359–369 (2021)
30.
go back to reference K. Zhou, M. Liu, X. Ye, Y. Zhu, Z. Liu, Y. Yang, Y. Dan, Y. Yuan, H. Hou, Electrospun highly crystalline ZnO nanofibers: super-efficient and stable photocatalytic hydrogen production activity. ChemistrySelect 5(22), 6691–6696 (2020)CrossRef K. Zhou, M. Liu, X. Ye, Y. Zhu, Z. Liu, Y. Yang, Y. Dan, Y. Yuan, H. Hou, Electrospun highly crystalline ZnO nanofibers: super-efficient and stable photocatalytic hydrogen production activity. ChemistrySelect 5(22), 6691–6696 (2020)CrossRef
31.
go back to reference H. Hou, Y. Yuan, S. Cao, Y. Yang, X. Ye, W. Yang, CuInS2 nanoparticles embedded in mesoporous TiO2 nanofibers for boosted photocatalytic hydrogen production. J. Mater Chem. C 8(32), 11001–11007 (2020)CrossRef H. Hou, Y. Yuan, S. Cao, Y. Yang, X. Ye, W. Yang, CuInS2 nanoparticles embedded in mesoporous TiO2 nanofibers for boosted photocatalytic hydrogen production. J. Mater Chem. C 8(32), 11001–11007 (2020)CrossRef
32.
go back to reference G. Huang, X. Liu, S. Shi, S. Li, Z. Xiao, W. Zhen, S. Liu, P.K. Wong, Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chin. J. Catal. 41(1), 50–61 (2020)CrossRef G. Huang, X. Liu, S. Shi, S. Li, Z. Xiao, W. Zhen, S. Liu, P.K. Wong, Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chin. J. Catal. 41(1), 50–61 (2020)CrossRef
33.
go back to reference D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications-a review. J. Appl. Chem. Biotechnol. 77(1), 102–116 (2002)CrossRef D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications-a review. J. Appl. Chem. Biotechnol. 77(1), 102–116 (2002)CrossRef
34.
go back to reference I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B-Envrion. 49(1), 1–14 (2004)CrossRef I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B-Envrion. 49(1), 1–14 (2004)CrossRef
35.
go back to reference S. Guo, Z. Wu, H. Wang, F. Dong, Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances. Catal. Commun. 10(13), 1766–1770 (2009)CrossRef S. Guo, Z. Wu, H. Wang, F. Dong, Synthesis of mesoporous TiO2 nanorods via a mild template-free sonochemical route and their photocatalytic performances. Catal. Commun. 10(13), 1766–1770 (2009)CrossRef
36.
go back to reference X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4(5), 1707–1716 (2012)CrossRef X. Zhang, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials. Nanoscale 4(5), 1707–1716 (2012)CrossRef
37.
go back to reference H. Kazuhito, I. Hiroshi, F. Akira, TiO2 photocatalysis: a historical overview and future prospects. Jap. J. Appl. Phys. 44(12R), 8269 (2005) H. Kazuhito, I. Hiroshi, F. Akira, TiO2 photocatalysis: a historical overview and future prospects. Jap. J. Appl. Phys. 44(12R), 8269 (2005)
38.
go back to reference Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42(7), 2568–2580 (2013)CrossRef Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42(7), 2568–2580 (2013)CrossRef
39.
go back to reference R. Daghrir, P. Drogui, D. Robert, Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res 52(10), 3581–3599 (2013)CrossRef R. Daghrir, P. Drogui, D. Robert, Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res 52(10), 3581–3599 (2013)CrossRef
40.
go back to reference C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, C. Pan, Present perspectives of advanced characterization techniques in TiO2-based photocatalysts. ACS Appl. Mater. Interfaces 9(28), 23265–23286 (2017)CrossRef C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, C. Pan, Present perspectives of advanced characterization techniques in TiO2-based photocatalysts. ACS Appl. Mater. Interfaces 9(28), 23265–23286 (2017)CrossRef
41.
go back to reference S.P. Adhikari, G.P. Awasthi, H.J. Kim, C.H. Park, C.S. Kim, Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32(24), 6163–6175 (2016)CrossRef S.P. Adhikari, G.P. Awasthi, H.J. Kim, C.H. Park, C.S. Kim, Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32(24), 6163–6175 (2016)CrossRef
42.
go back to reference Q. Xiao, L. Ouyang, L. Gao, C. Yao, Preparation and visible light photocatalytic activity of mesoporous N, S-codoped TiO2(B) nanobelts. Appl. Surf. Sci. 257(8), 3652–3656 (2011)CrossRef Q. Xiao, L. Ouyang, L. Gao, C. Yao, Preparation and visible light photocatalytic activity of mesoporous N, S-codoped TiO2(B) nanobelts. Appl. Surf. Sci. 257(8), 3652–3656 (2011)CrossRef
43.
go back to reference T.-Y. Ma, H. Li, T.-Z. Ren, Z.-Y. Yuan, Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Adv 2(7), 2790 (2012)CrossRef T.-Y. Ma, H. Li, T.-Z. Ren, Z.-Y. Yuan, Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Adv 2(7), 2790 (2012)CrossRef
44.
go back to reference D. Hou, X. Hu, W. Ho, P. Hu, Y. Huang, Facile fabrication of porous Cr-doped SrTiO3 nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. J. Mater Chem. A 3(7), 3935–3943 (2015)CrossRef D. Hou, X. Hu, W. Ho, P. Hu, Y. Huang, Facile fabrication of porous Cr-doped SrTiO3 nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. J. Mater Chem. A 3(7), 3935–3943 (2015)CrossRef
45.
go back to reference Z. Wang, Z. Li, H. Zhang, C. Wang, Improved photocatalytic activity of mesoporous ZnO–SnO2 coupled nanofibers. Catal. Commun. 11(4), 257–260 (2009)CrossRef Z. Wang, Z. Li, H. Zhang, C. Wang, Improved photocatalytic activity of mesoporous ZnO–SnO2 coupled nanofibers. Catal. Commun. 11(4), 257–260 (2009)CrossRef
46.
go back to reference Y. Yang, H. Wang, X. Li, C. Wang, Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett. 63(2), 331–333 (2009)CrossRef Y. Yang, H. Wang, X. Li, C. Wang, Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Mater Lett. 63(2), 331–333 (2009)CrossRef
47.
go back to reference R. Liu, Y. Huang, A. Xiao, H. Liu, Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. J. Alloys. Compd. 503(1), 103–110 (2010)CrossRef R. Liu, Y. Huang, A. Xiao, H. Liu, Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. J. Alloys. Compd. 503(1), 103–110 (2010)CrossRef
48.
go back to reference Z. Bian, J. Zhu, F. Cao, Y. Huo, Y. Lu, H. Li, Solvothermal synthesis of well-defined TiO2 mesoporous nanotubes with enhanced photocatalytic activity. Chem. Commun. 46(44), 8451 (2010)CrossRef Z. Bian, J. Zhu, F. Cao, Y. Huo, Y. Lu, H. Li, Solvothermal synthesis of well-defined TiO2 mesoporous nanotubes with enhanced photocatalytic activity. Chem. Commun. 46(44), 8451 (2010)CrossRef
49.
go back to reference S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, Y. Li, Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity. J. Colloid. Sci. 355(2), 328–333 (2011)CrossRef S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, Y. Li, Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity. J. Colloid. Sci. 355(2), 328–333 (2011)CrossRef
50.
go back to reference W. Zhao, Y. Yang, R. Hao, F. Liu, Y. Wang, M. Tan, J. Tang, D. Ren, D. Zhao, Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties. J. Hazard. Mater. 192(3), 1548–1554 (2011)CrossRef W. Zhao, Y. Yang, R. Hao, F. Liu, Y. Wang, M. Tan, J. Tang, D. Ren, D. Zhao, Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties. J. Hazard. Mater. 192(3), 1548–1554 (2011)CrossRef
51.
go back to reference J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater. Lett. 75, 126–129 (2012)CrossRef J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater. Lett. 75, 126–129 (2012)CrossRef
52.
go back to reference J. Li, H. Qiao, Y. Du, C. Chen, X. Li, J. Cui, D. Kumar, Q. Wei, Electrospinning synthesis and photocatalytic activity of mesoporous TiO2 nanofibers. Sci. World J. 2012, 1–7 (2012)CrossRef J. Li, H. Qiao, Y. Du, C. Chen, X. Li, J. Cui, D. Kumar, Q. Wei, Electrospinning synthesis and photocatalytic activity of mesoporous TiO2 nanofibers. Sci. World J. 2012, 1–7 (2012)CrossRef
53.
go back to reference C. Liu, X. Wang, Mesoporous titanium dioxide nanobelts: Synthesis, morphology evolution, and photocatalytic properties. J. Mater Res. 27(17), 2265–2270 (2012)CrossRef C. Liu, X. Wang, Mesoporous titanium dioxide nanobelts: Synthesis, morphology evolution, and photocatalytic properties. J. Mater Res. 27(17), 2265–2270 (2012)CrossRef
54.
go back to reference S. Liu, B. Liu, K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Electrospinning preparation and photocatalytic activity of porous TiO2 nanofibers. J. Nanomater 2012, 1–5 (2012) S. Liu, B. Liu, K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Electrospinning preparation and photocatalytic activity of porous TiO2 nanofibers. J. Nanomater 2012, 1–5 (2012)
55.
go back to reference Y. Shao, Y. Ma, Mesoporous CeO2 nanowires as recycled photocatalysts. Sci. China Chem. 55(7), 1303–1307 (2012) Y. Shao, Y. Ma, Mesoporous CeO2 nanowires as recycled photocatalysts. Sci. China Chem. 55(7), 1303–1307 (2012)
56.
go back to reference G.-Y. Zhang, Y. Feng, Y.-Y. Xu, D.-Z. Gao, Y.-Q. Sun, Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res. Bull. 47(3), 625–630 (2012)CrossRef G.-Y. Zhang, Y. Feng, Y.-Y. Xu, D.-Z. Gao, Y.-Q. Sun, Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater Res. Bull. 47(3), 625–630 (2012)CrossRef
57.
go back to reference P. Singh, K. Mondal, A. Sharma, Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Sci. 394, 208–215 (2013)CrossRef P. Singh, K. Mondal, A. Sharma, Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid Sci. 394, 208–215 (2013)CrossRef
58.
go back to reference G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind. Eng. Chem. Res. 53(33), 13023–13029 (2014)CrossRef G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind. Eng. Chem. Res. 53(33), 13023–13029 (2014)CrossRef
59.
go back to reference K. Mondal, S. Bhattacharyya, A. Sharma, Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Ind. Eng. Chem. Res. 53(49), 18900–18909 (2014)CrossRef K. Mondal, S. Bhattacharyya, A. Sharma, Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Ind. Eng. Chem. Res. 53(49), 18900–18909 (2014)CrossRef
60.
go back to reference M. Gonzalez-Abrego, A. Hernandez-Granados, C. Guerrero-Bermea, A. Martinez de la Cruz, D. Garcia-Gutierrez, S. Sepulveda-Guzman, R. Cruz-Silva, Mesoporous titania nanofibers by solution blow spinning. J. Sol-Gel. Sci. Technol. 81(2), 468–474 (2016)CrossRef M. Gonzalez-Abrego, A. Hernandez-Granados, C. Guerrero-Bermea, A. Martinez de la Cruz, D. Garcia-Gutierrez, S. Sepulveda-Guzman, R. Cruz-Silva, Mesoporous titania nanofibers by solution blow spinning. J. Sol-Gel. Sci. Technol. 81(2), 468–474 (2016)CrossRef
61.
go back to reference N. Singh, K. Mondal, M. Misra, A. Sharma, R.K. Gupta, Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Adv. 6(53), 48109–48119 (2016)CrossRef N. Singh, K. Mondal, M. Misra, A. Sharma, R.K. Gupta, Quantum dot sensitized electrospun mesoporous titanium dioxide hollow nanofibers for photocatalytic applications. RSC Adv. 6(53), 48109–48119 (2016)CrossRef
62.
go back to reference H. Liu, H. Hou, F. Gao, X. Yao, W. Yang, Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities. ACS Appl. Mater. Interfaces 8(3), 1929–1936 (2016)CrossRef H. Liu, H. Hou, F. Gao, X. Yao, W. Yang, Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities. ACS Appl. Mater. Interfaces 8(3), 1929–1936 (2016)CrossRef
63.
go back to reference S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, Fabrication of mesoporous BaTiO3/SnO2 nanorods with highly enhanced photocatalytic degradation of organic pollutants. J. Ind. Eng. Chem. 53, 201–212 (2017)CrossRef S. Selvarajan, P. Malathy, A. Suganthi, M. Rajarajan, Fabrication of mesoporous BaTiO3/SnO2 nanorods with highly enhanced photocatalytic degradation of organic pollutants. J. Ind. Eng. Chem. 53, 201–212 (2017)CrossRef
64.
go back to reference S. Tian, Q. Liu, J. Sun, M. Zhu, S. Wu, X. Zhao, Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties. J. Colloid Interface Sci. 534, 389–398 (2019)CrossRef S. Tian, Q. Liu, J. Sun, M. Zhu, S. Wu, X. Zhao, Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties. J. Colloid Interface Sci. 534, 389–398 (2019)CrossRef
65.
go back to reference P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 790, 257–326 (2019)CrossRef P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 790, 257–326 (2019)CrossRef
Metadata
Title
Applications of 1D Mesoporous Inorganic Nanomaterials in Photocatalysis
Authors
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_8