Skip to main content
Top

2022 | OriginalPaper | Chapter

9. Applications of 1D Mesoporous Inorganic Nanostructures in Solar Cells

Authors : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Published in: One-Dimensional Mesoporous Inorganic Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is a good way to manage the severe energy crisis by fabricating solar cells that have great power conversion efficiency (Law et al. in Nat Mater 4:455–459, 2005; Zhang et al. in Adv Mater 21:4087–4108, 2009; Hagfeldt et al. in Chem Rev 110:6595–6663, 2010; Nie et al. in Science 347:522–525, 2015).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat Mater 4(6), 455–459 (2005)CrossRef M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat Mater 4(6), 455–459 (2005)CrossRef
2.
go back to reference Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells. Adv. Mater 21(41), 4087–4108 (2009)CrossRef Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for dye-sensitized solar cells. Adv. Mater 21(41), 4087–4108 (2009)CrossRef
3.
go back to reference A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef
4.
go back to reference W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRef W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015)CrossRef
5.
go back to reference W. Zhang, R. Zhu, L. Ke, X. Liu, B., S. Ramakrishna, Anatase mesoporous TiO2 nanofibers with high surface area for solid‐state dye‐sensitized solar cells. Small 6(19), 2176–2182 (2010) W. Zhang, R. Zhu, L. Ke, X. Liu, B., S. Ramakrishna, Anatase mesoporous TiO2 nanofibers with high surface area for solid‐state dye‐sensitized solar cells. Small 6(19), 2176–2182 (2010)
6.
go back to reference W.H. Jung, N.-S. Kwak, T.S. Hwang, K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci. 261, 343–435 (2012)CrossRef W.H. Jung, N.-S. Kwak, T.S. Hwang, K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci. 261, 343–435 (2012)CrossRef
7.
go back to reference F.H. Bijarbooneh, Y. Zhao, Z. Sun, Y.-U. Heo, V. Malgras, J.H. Kim, S.X. Dou, Structurally stabilized mesoporous TiO2 nanofibers for efficient dye-sensitized solar cells. APL Mater. 1(3), 032106 (2013) F.H. Bijarbooneh, Y. Zhao, Z. Sun, Y.-U. Heo, V. Malgras, J.H. Kim, S.X. Dou, Structurally stabilized mesoporous TiO2 nanofibers for efficient dye-sensitized solar cells. APL Mater. 1(3), 032106 (2013)
8.
go back to reference S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443–1464 (2013)CrossRef S. Zhang, X. Yang, Y. Numata, L. Han, Highly efficient dye-sensitized solar cells: progress and future challenges. Energy Environ. Sci. 6(5), 1443–1464 (2013)CrossRef
9.
go back to reference S. Lee, G.S. Han, J.-H. Lee, J.-K. Lee, H.S. Jung, Mesoporous TiO2 nanowires as bi-functional materials for dye-sensitized solar cells. Electrochim. Acta 74, 83–86 (2012)CrossRef S. Lee, G.S. Han, J.-H. Lee, J.-K. Lee, H.S. Jung, Mesoporous TiO2 nanowires as bi-functional materials for dye-sensitized solar cells. Electrochim. Acta 74, 83–86 (2012)CrossRef
10.
go back to reference S.H. Hwang, C. Kim, H. Song, S. Son, J. Jang, Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl. Mater. Interfaces 4(10), 5287–5292 (2012)CrossRef S.H. Hwang, C. Kim, H. Song, S. Son, J. Jang, Designed architecture of multiscale porous TiO2 nanofibers for dye-sensitized solar cells photoanode. ACS Appl. Mater. Interfaces 4(10), 5287–5292 (2012)CrossRef
11.
go back to reference A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)CrossRef A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46(22), 3457–3466 (2001)CrossRef
12.
go back to reference S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. J. Mater Chem. A. 2(13), 4474–4490 (2014)CrossRef S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. J. Mater Chem. A. 2(13), 4474–4490 (2014)CrossRef
13.
go back to reference H. Wang, Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5(8), 8182–8188 (2012)CrossRef H. Wang, Y.H. Hu, Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5(8), 8182–8188 (2012)CrossRef
14.
go back to reference R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)CrossRef R. Jose, V. Thavasi, S. Ramakrishna, Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 92(2), 289–301 (2009)CrossRef
15.
go back to reference S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J. Power Sources 239, 122–127 (2013)CrossRef S.-H. Park, B.-K. Kim, W.-J. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J. Power Sources 239, 122–127 (2013)CrossRef
16.
go back to reference S.-q Guo, T.-z Jing, X. Zhang, X.-b Yang, Z.-h Yuan, F.-z Hu, Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 6(23), 14433–14440 (2014)CrossRef S.-q Guo, T.-z Jing, X. Zhang, X.-b Yang, Z.-h Yuan, F.-z Hu, Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 6(23), 14433–14440 (2014)CrossRef
17.
go back to reference M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRef
18.
go back to reference G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater Chem. A 3(17), 8970–8980 (2015)CrossRef G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater Chem. A 3(17), 8970–8980 (2015)CrossRef
19.
go back to reference J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608 J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608
20.
go back to reference M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)CrossRef M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)CrossRef
21.
go back to reference S. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater Chem. A. 2(39), 16429–16433 (2014)CrossRef S. Hwang, J. Roh, J. Lee, J. Ryu, J. Yun, J. Jang, Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells. J. Mater Chem. A. 2(39), 16429–16433 (2014)CrossRef
22.
go back to reference H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, Q. Meng, Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chem. Commun. 51(51), 10306–10309 (2015)CrossRef H. Huang, J. Shi, S. Lv, D. Li, Y. Luo, Q. Meng, Sprayed P25 scaffolds for high-efficiency mesoscopic perovskite solar cells. Chem. Commun. 51(51), 10306–10309 (2015)CrossRef
23.
go back to reference S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5(1), 11424 (2015)CrossRef S.S. Mali, C. Su Shim, C. Kook Hong, Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5(1), 11424 (2015)CrossRef
24.
go back to reference K. Lee, C.-M. Yoon, J. Noh, J. Jang, Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem. Commun. 52(22), 4231–4234 (2016)CrossRef K. Lee, C.-M. Yoon, J. Noh, J. Jang, Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chem. Commun. 52(22), 4231–4234 (2016)CrossRef
25.
go back to reference K. Mahmood, A. Khalid, S.W. Ahmad, M.T. Mehran, Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surf. Coat. Technol. 352, 231–237 (2018)CrossRef K. Mahmood, A. Khalid, S.W. Ahmad, M.T. Mehran, Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surf. Coat. Technol. 352, 231–237 (2018)CrossRef
Metadata
Title
Applications of 1D Mesoporous Inorganic Nanostructures in Solar Cells
Authors
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_9