Skip to main content
Top

2017 | OriginalPaper | Chapter

21. Applications of Nanoclay-Containing Polymer Nanocomposites

Authors : Jayita Bandyopadhyay, Suprakas Sinha Ray

Published in: Inorganic Nanosheets and Nanosheet-Based Materials

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter provides an overview on properties and applications of nanoclay-containing polymer nanocomposites (PNCs). Though PNCs are advantageous over traditional polymer composites, the key parameter controlling the successful commercialization of the PNCs is the cost-performance index. The future of PNCs along with the value chain from product development to the commercialization and possibility of recyclability and reusability have also been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Okada A, Kawasumi M, Usuki A et al (1989) Nylon 6–clay hybrid. MRS Proc 45–50 Okada A, Kawasumi M, Usuki A et al (1989) Nylon 6–clay hybrid. MRS Proc 45–50
2.
go back to reference Ray SS (2013) Clay containing polymer nanocomposites: from fundamentals to real applications. Elsevier. ISBN 978-0-444-59437-2 Ray SS (2013) Clay containing polymer nanocomposites: from fundamentals to real applications. Elsevier. ISBN 978-0-444-59437-2
3.
go back to reference Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37:3458–3466CrossRef Lloyd SM, Lave LB (2003) Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ Sci Technol 37:3458–3466CrossRef
4.
go back to reference Ray SS (2013) Environmentally friendly polymer nanocomposites. Woodhead Publishing, England. ISBN 0 85709 777 6 Ray SS (2013) Environmentally friendly polymer nanocomposites. Woodhead Publishing, England. ISBN 0 85709 777 6
5.
go back to reference McWilliams A, BCC research, global markets for global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. NANO21F, ISBN 1-56965-807-2 McWilliams A, BCC research, global markets for global markets for nanocomposites, nanoparticles, nanoclays, and nanotubes. NANO21F, ISBN 1-56965-807-2
6.
go back to reference Onder E, Sarier N, MS Ersoy (2012) The manufacturing of polyamide- and polypropylene-organoclay nanocomposites filaments and their suitability for textile applications. Thermochim Acta 543:37–58CrossRef Onder E, Sarier N, MS Ersoy (2012) The manufacturing of polyamide- and polypropylene-organoclay nanocomposites filaments and their suitability for textile applications. Thermochim Acta 543:37–58CrossRef
7.
go back to reference Khanjanzadeh H, Pirayesh H, Salari A (2013) Long term hygroscopic characteristics of polypropylene based hybrid composites with and without organo-modified clay. Eur J Wood Prod 71:211–218CrossRef Khanjanzadeh H, Pirayesh H, Salari A (2013) Long term hygroscopic characteristics of polypropylene based hybrid composites with and without organo-modified clay. Eur J Wood Prod 71:211–218CrossRef
8.
go back to reference Komatsu LGH, Wl Oliani, Lugao AB et al (2014) Environmental ageing of irradiated polypropylene/montmorillonite nanocomposites obtained in molten state. Rad Phys Chem 97:233–238CrossRef Komatsu LGH, Wl Oliani, Lugao AB et al (2014) Environmental ageing of irradiated polypropylene/montmorillonite nanocomposites obtained in molten state. Rad Phys Chem 97:233–238CrossRef
9.
go back to reference Kulshreshtha AK, Maiti AK, Choudhuri MS et al (2006) Nano-addition of raw bentonite enhances polypropylene (PP) properties. J Appl Polym Sci 99:1004–1009CrossRef Kulshreshtha AK, Maiti AK, Choudhuri MS et al (2006) Nano-addition of raw bentonite enhances polypropylene (PP) properties. J Appl Polym Sci 99:1004–1009CrossRef
10.
go back to reference Morreale M, Dintcheva NT (2013) Accelerated weathering of PP based nanocomposites: effect of the presence of maleic anhydride grafted polypropylene. eXPRESS Polym Lett 7:703–715 Morreale M, Dintcheva NT (2013) Accelerated weathering of PP based nanocomposites: effect of the presence of maleic anhydride grafted polypropylene. eXPRESS Polym Lett 7:703–715
11.
go back to reference He A, Wang L, Yao W et al (2010) Structural design of imidazolium and its application in PP/montmorillonite nanocomposites. Polym Degrad Stabil 95:651–655CrossRef He A, Wang L, Yao W et al (2010) Structural design of imidazolium and its application in PP/montmorillonite nanocomposites. Polym Degrad Stabil 95:651–655CrossRef
12.
go back to reference Dahiya JB, Kumer N, Bockhorn H (2014) Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. Fire Mater 38:1–12CrossRef Dahiya JB, Kumer N, Bockhorn H (2014) Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. Fire Mater 38:1–12CrossRef
13.
go back to reference Yi D, Yang R, Wilkie CA (2014) Full scale nanocomposites: clay in fire retardant and polymer. Polym Degrad Stabil 105:31–41CrossRef Yi D, Yang R, Wilkie CA (2014) Full scale nanocomposites: clay in fire retardant and polymer. Polym Degrad Stabil 105:31–41CrossRef
14.
go back to reference Liu H, Zhong Q, Kong Q et al (2014) Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim 117:693–699CrossRef Liu H, Zhong Q, Kong Q et al (2014) Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim 117:693–699CrossRef
15.
go back to reference Sari MG, Shahbazi M, Pakdel AS (2014) Developing a novel hyperbranched polymer-modified PP/clay nanocomposite: characteristic investigation. Polym-Plast Technol Eng 53:1561–1573CrossRef Sari MG, Shahbazi M, Pakdel AS (2014) Developing a novel hyperbranched polymer-modified PP/clay nanocomposite: characteristic investigation. Polym-Plast Technol Eng 53:1561–1573CrossRef
16.
go back to reference Downing-Perrault A (2005) Polymer nanocomposites are the future. Downloaded on 18 Jan 2016 Downing-Perrault A (2005) Polymer nanocomposites are the future. Downloaded on 18 Jan 2016
17.
go back to reference Ayhan Z, Cimmino S, Esturk O et al (2015) Development of films of novel polypropylene based nanomaterials for food packaging application. Packag Technol Sci 28:589–602CrossRef Ayhan Z, Cimmino S, Esturk O et al (2015) Development of films of novel polypropylene based nanomaterials for food packaging application. Packag Technol Sci 28:589–602CrossRef
18.
go back to reference Agarwal A, Raheja A, Natarajan TS et al (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innovat Food Sci Emer Technol 26:424–430CrossRef Agarwal A, Raheja A, Natarajan TS et al (2014) Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. Innovat Food Sci Emer Technol 26:424–430CrossRef
19.
go back to reference Lan T (2009) Nanocomposite materials for packaging film applications, symposium on nanomaterials for flexible packaging. Downloaded on 18 Jan 2016 Lan T (2009) Nanocomposite materials for packaging film applications, symposium on nanomaterials for flexible packaging. Downloaded on 18 Jan 2016
20.
go back to reference Yusof F, Olalekan ST, Shah QH et al (2011) Chemical resistance tests on PP-ternary nanocomposite for its application in bioreactor liner fabrication. Sci China 54:2217–2223CrossRef Yusof F, Olalekan ST, Shah QH et al (2011) Chemical resistance tests on PP-ternary nanocomposite for its application in bioreactor liner fabrication. Sci China 54:2217–2223CrossRef
21.
go back to reference Maul P (2005) Barrier enhancement using additives. Fillers, pigments and additives for plastics in packaging applications. Pira international conference Brussels, Belgium, 5–6 Dec Maul P (2005) Barrier enhancement using additives. Fillers, pigments and additives for plastics in packaging applications. Pira international conference Brussels, Belgium, 5–6 Dec
22.
go back to reference Siró I, Plackett D, Sommer-Larsen P (2010) A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching. Packag Technol Sci 23:301–315CrossRef Siró I, Plackett D, Sommer-Larsen P (2010) A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching. Packag Technol Sci 23:301–315CrossRef
23.
go back to reference Di Maio L, Scarfato P, Galdi MR (2015) Development and oxygen scavenging performance of three-layer active PET films for food packaging. J Appl Polym Sci 132:41465 (10 pages) Di Maio L, Scarfato P, Galdi MR (2015) Development and oxygen scavenging performance of three-layer active PET films for food packaging. J Appl Polym Sci 132:41465 (10 pages)
24.
go back to reference Kubisova H, Merinska D (2008) Polyolefin/clay nanocomposites: comparing mechanical and barrier properties. In: Aciemo D, D’Amore A, Grassia L (eds) CP1042, IVth international conference on times of polymers (TOP) and composites. American Institute of Physics, ISBN 978-0-7354-0570-7/08 Kubisova H, Merinska D (2008) Polyolefin/clay nanocomposites: comparing mechanical and barrier properties. In: Aciemo D, D’Amore A, Grassia L (eds) CP1042, IVth international conference on times of polymers (TOP) and composites. American Institute of Physics, ISBN 978-0-7354-0570-7/08
25.
go back to reference Sánchez-Valdes S, Méndez-Nonell J, Madellín-Rodríguez FJ et al (2010) Evaluation of different amine-functionalized polyethylenes as compatibilizers for polyethylene film nanocomposites. Polym Int 59:704–711 Sánchez-Valdes S, Méndez-Nonell J, Madellín-Rodríguez FJ et al (2010) Evaluation of different amine-functionalized polyethylenes as compatibilizers for polyethylene film nanocomposites. Polym Int 59:704–711
26.
go back to reference Olewnik E, Garman K, Peichota G et al (2012) Thermal properties of nanocomposites based on polyethylene and n-heptaquinolium modified montmorillonite. J Therm Anal Calorim 110:479–484CrossRef Olewnik E, Garman K, Peichota G et al (2012) Thermal properties of nanocomposites based on polyethylene and n-heptaquinolium modified montmorillonite. J Therm Anal Calorim 110:479–484CrossRef
27.
go back to reference Manias E, Heidecker MJ, Nakazima H, Costache MC et al (2011) Poly(ethylene terephthalate) nanocomposites using nanoclays modified with thermally stable surfactants, Chap. 4. Cambridge University Press, Cambridge Manias E, Heidecker MJ, Nakazima H, Costache MC et al (2011) Poly(ethylene terephthalate) nanocomposites using nanoclays modified with thermally stable surfactants, Chap. 4. Cambridge University Press, Cambridge
28.
go back to reference Sherman LM (2004) Chasing nanocomposites. Plast Technol, November Issue. Downloaded on 9 Feb 2016 Sherman LM (2004) Chasing nanocomposites. Plast Technol, November Issue. Downloaded on 9 Feb 2016
29.
go back to reference Somwangthanaroj A, Photyotin K, Limpanart S, et al (2012) Effect of type of surfactants and organoclay loading on the mechanical properties of EVOH/clay nanocomposite blown films. Polym Plast Technol Eng 51:1173–1180 Somwangthanaroj A, Photyotin K, Limpanart S, et al (2012) Effect of type of surfactants and organoclay loading on the mechanical properties of EVOH/clay nanocomposite blown films. Polym Plast Technol Eng 51:1173–1180
30.
go back to reference Kim SW, Cha S-H (2014) Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymer-based nanocomposites for food packaging films: effects of nanoclay loading. J Appl Polym Sci 131:40289 (8 pages) Kim SW, Cha S-H (2014) Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymer-based nanocomposites for food packaging films: effects of nanoclay loading. J Appl Polym Sci 131:40289 (8 pages)
31.
go back to reference Mokwena KK, Tang J (2012) Ethylene (vinyl alcohol): a review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr 52:640–650CrossRef Mokwena KK, Tang J (2012) Ethylene (vinyl alcohol): a review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr 52:640–650CrossRef
32.
go back to reference Apoorva S, Arjan G, Yoojeong K (2014) Multilayer flame retardant barrier films and fabrics. US Patent 8784978 B2 Apoorva S, Arjan G, Yoojeong K (2014) Multilayer flame retardant barrier films and fabrics. US Patent 8784978 B2
33.
go back to reference Kim M (2006) Nanocomposite composition having barrier property. US Patent 20060094811 A1 Kim M (2006) Nanocomposite composition having barrier property. US Patent 20060094811 A1
34.
go back to reference Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRef Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1094CrossRef
35.
go back to reference Turner SR, Connell GW, Gilmer JW et al (2002) High barrier amorphous polyamide-clay nanocomposite and a process for preparing same. US Patents 6417262 B1 Turner SR, Connell GW, Gilmer JW et al (2002) High barrier amorphous polyamide-clay nanocomposite and a process for preparing same. US Patents 6417262 B1
36.
go back to reference García A, Eceolaza S, Iriarte M et al (2007) Barrier character improvement of an amorphous polyamide (trogamid) by the addition of a nanoclay. J Memb Sci 301:190–199CrossRef García A, Eceolaza S, Iriarte M et al (2007) Barrier character improvement of an amorphous polyamide (trogamid) by the addition of a nanoclay. J Memb Sci 301:190–199CrossRef
37.
go back to reference Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552CrossRef Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552CrossRef
38.
go back to reference Shah RK, Paul DR (2004) Nylon 6 nanocomposites prepared by a melt mixing Masterbatch process. Polymer 45:2991–3000CrossRef Shah RK, Paul DR (2004) Nylon 6 nanocomposites prepared by a melt mixing Masterbatch process. Polymer 45:2991–3000CrossRef
39.
go back to reference Fornes TD, Yoon PJ, Paul DR (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer 44:7545–7556CrossRef Fornes TD, Yoon PJ, Paul DR (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer 44:7545–7556CrossRef
40.
go back to reference Hasani-Sadrabadi MM, Ghaffarian SR, Mokarram-Dorri N et al (2009) Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ion 180:1497–1504CrossRef Hasani-Sadrabadi MM, Ghaffarian SR, Mokarram-Dorri N et al (2009) Characterization of nanohybrid membranes for direct methanol fuel cell applications. Solid State Ion 180:1497–1504CrossRef
41.
go back to reference Ilbeygi H, Ismali AF, Mayahi A et al (2013) Transport properties and direct methanol fuel cell performance of sulfonated poly (ether ether ketone)/cloisite/triaminopyrimidine nanocomposite polymer electrolyte membrane at moderate temperature. Sep Purif Technol 118:567–575CrossRef Ilbeygi H, Ismali AF, Mayahi A et al (2013) Transport properties and direct methanol fuel cell performance of sulfonated poly (ether ether ketone)/cloisite/triaminopyrimidine nanocomposite polymer electrolyte membrane at moderate temperature. Sep Purif Technol 118:567–575CrossRef
42.
go back to reference Doğan H, Inan TY, Koral M et al (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294CrossRef Doğan H, Inan TY, Koral M et al (2011) Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Appl Clay Sci 52:285–294CrossRef
43.
go back to reference Plastic in European cars (2000–2008) A Rapra Industry Analysis Report, IG Helps, Febrary 2001 Plastic in European cars (2000–2008) A Rapra Industry Analysis Report, IG Helps, Febrary 2001
44.
go back to reference Yilmaz O, Cheaburu CN, Durraccio D et al (2010) Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization: effect of clay types. Appl Clay Sci 49:288–297CrossRef Yilmaz O, Cheaburu CN, Durraccio D et al (2010) Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization: effect of clay types. Appl Clay Sci 49:288–297CrossRef
45.
go back to reference Liu M, Wu C, Jiao Y et al (2013) Chitosan-Halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Matter Chem B 1:2078–2089CrossRef Liu M, Wu C, Jiao Y et al (2013) Chitosan-Halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Matter Chem B 1:2078–2089CrossRef
46.
go back to reference Chang C-W, van Spreeuwel A, Zhang C et al (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Mat 6:5157–5164CrossRef Chang C-W, van Spreeuwel A, Zhang C et al (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Mat 6:5157–5164CrossRef
47.
go back to reference Navarchain AH, Joulazadeh M, Karimi F (2014) Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog Org Coat 77:347–353CrossRef Navarchain AH, Joulazadeh M, Karimi F (2014) Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog Org Coat 77:347–353CrossRef
48.
go back to reference Akbarinezhad E, Ebrahimi M, Sharif F et al (2011) Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog Org Coat 70:39–44CrossRef Akbarinezhad E, Ebrahimi M, Sharif F et al (2011) Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog Org Coat 70:39–44CrossRef
49.
go back to reference Loyens W, Maurer FHJ, Jannasch P (2005) Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46:7334–7345CrossRef Loyens W, Maurer FHJ, Jannasch P (2005) Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46:7334–7345CrossRef
50.
go back to reference Ratna D, Divekar S, Patchaiappan S et al (2007) Poly(ethylene oxide)/clay nanocomposites for solid polymer electrolyte applications. Polym Int 56:900–904CrossRef Ratna D, Divekar S, Patchaiappan S et al (2007) Poly(ethylene oxide)/clay nanocomposites for solid polymer electrolyte applications. Polym Int 56:900–904CrossRef
Metadata
Title
Applications of Nanoclay-Containing Polymer Nanocomposites
Authors
Jayita Bandyopadhyay
Suprakas Sinha Ray
Copyright Year
2017
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56496-6_21

Premium Partners