Skip to main content
Top
Published in: Journal of Materials Science 19/2019

15-04-2019 | Review

Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review

Authors: Yuzhou Zhou, Ting Wang, Dan Zhi, Binglin Guo, Yaoyu Zhou, Jing Nie, Anqi Huang, Yuan Yang, Hongli Huang, Lin Luo

Published in: Journal of Materials Science | Issue 19/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoscale zero-valent iron (nZVI, nFe0) particles have been investigated in recent years as a promising material for the removal of antibiotics from water environment. Although the potential benefits of nZVI in environmental remediation are considerable, there is a distinct need to rationally apply zero-valent iron-based (nano)materials to antibiotics removal in hydrosphere. This review supplied current opinions about the most recent works, which have been carried out toward the applications of various zero-valent iron-based (nano)materials (e.g., pristine nZVI, surface-modified nZVI, porous material-supported nZVI, inorganic clay mineral-supported nZVI and material-encapsulated nZVI) to the removal of antibiotics from water. The corresponding interaction mechanisms between the various zero-valent iron-based (nano)materials and the antibiotics, including adsorption, reduction, oxidation and other special interaction mechanisms, were discussed. The key influencing factors affecting the reactivities of the zero-valent iron-based (nano)materials with antibiotics (e.g., solution pH, solution temperature, nZVI dosage, coexisting oxy-anions and cations) were highlighted. It demonstrated that the zero-valent iron-based (nano)materials possess high reactivities with antibiotics and have great application prospects in water environmental remediation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273CrossRef Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273CrossRef
2.
go back to reference Zhao Q, Mao Q, Zhou Y, Wei J, Liu X, Yang J, Luo L, Zhang J, Chen H, Chen H (2017) Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications. Chemosphere 189:224–238CrossRef Zhao Q, Mao Q, Zhou Y, Wei J, Liu X, Yang J, Luo L, Zhang J, Chen H, Chen H (2017) Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications. Chemosphere 189:224–238CrossRef
3.
go back to reference Liu X, Yang D, Zhou Y, Zhang J, Luo L, Meng S, Chen S, Tan M, Li Z, Tang L (2017) Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin. Chemosphere 182:306–315CrossRef Liu X, Yang D, Zhou Y, Zhang J, Luo L, Meng S, Chen S, Tan M, Li Z, Tang L (2017) Electrocatalytic properties of N-doped graphite felt in electro-Fenton process and degradation mechanism of levofloxacin. Chemosphere 182:306–315CrossRef
4.
go back to reference Liu X, Zhou Y, Zhang J, Tang L, Luo L, Zeng G (2017) Iron containing metal–organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl Mater Interfaces 9:20255–20275CrossRef Liu X, Zhou Y, Zhang J, Tang L, Luo L, Zeng G (2017) Iron containing metal–organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl Mater Interfaces 9:20255–20275CrossRef
5.
go back to reference Cao Z, Liu X, Xu J, Zhang J, Yang Y, Zhou J, Xu X, Lowry GV (2017) Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ Sci Technol 51:11269–11277CrossRef Cao Z, Liu X, Xu J, Zhang J, Yang Y, Zhou J, Xu X, Lowry GV (2017) Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron. Environ Sci Technol 51:11269–11277CrossRef
6.
go back to reference Bautitz IR, Velosa AC, Nogueira RFP (2012) Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88:688–692CrossRef Bautitz IR, Velosa AC, Nogueira RFP (2012) Zero valent iron mediated degradation of the pharmaceutical diazepam. Chemosphere 88:688–692CrossRef
7.
go back to reference Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268:60–67CrossRef Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268:60–67CrossRef
8.
go back to reference Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B (2012) Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 181:113–119CrossRef Chen J, Qiu X, Fang Z, Yang M, Pokeung T, Gu F, Cheng W, Lan B (2012) Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles. Chem Eng J 181:113–119CrossRef
9.
go back to reference Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U (VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408CrossRef Sun Y, Ding C, Cheng W, Wang X (2014) Simultaneous adsorption and reduction of U (VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408CrossRef
10.
go back to reference Lv X, Xu J, Jiang G, Tang J, Xu X (2012) Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J Colloid Interface Sci 369:460–469CrossRef Lv X, Xu J, Jiang G, Tang J, Xu X (2012) Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J Colloid Interface Sci 369:460–469CrossRef
11.
go back to reference Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465CrossRef Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465CrossRef
12.
go back to reference Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596CrossRef Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596CrossRef
13.
go back to reference Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814CrossRef Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814CrossRef
14.
go back to reference Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y (2011) Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater 192:44–53 Chen H, Luo H, Lan Y, Dong T, Hu B, Wang Y (2011) Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone (PVP-K30) modified nanoscale zero valent iron. J Hazard Mater 192:44–53
15.
go back to reference Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635CrossRef Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635CrossRef
16.
go back to reference Hanay Ö, Yıldız B, Aslan S, Hasar H (2014) Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Environ Sci Pollut R 21:3774–3782CrossRef Hanay Ö, Yıldız B, Aslan S, Hasar H (2014) Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Environ Sci Pollut R 21:3774–3782CrossRef
17.
go back to reference Perini JA, Silva BF, Nogueira RFP (2014) Zero-valent iron mediated degradation of ciprofloxacin–assessment of adsorption, operational parameters and degradation products. Chemosphere 117:345–352CrossRef Perini JA, Silva BF, Nogueira RFP (2014) Zero-valent iron mediated degradation of ciprofloxacin–assessment of adsorption, operational parameters and degradation products. Chemosphere 117:345–352CrossRef
18.
go back to reference Stieber M, Putschew A, Jekel M (2011) Treatment of pharmaceuticals and diagnostic agents using zero-valent iron–kinetic studies and assessment of transformation products assay. Environ Sci Technol 45:4944–4950CrossRef Stieber M, Putschew A, Jekel M (2011) Treatment of pharmaceuticals and diagnostic agents using zero-valent iron–kinetic studies and assessment of transformation products assay. Environ Sci Technol 45:4944–4950CrossRef
19.
go back to reference Xia S, Gu Z, Zhang Z, Zhang J, Hermanowicz SW (2014) Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem Eng J 257:98–104CrossRef Xia S, Gu Z, Zhang Z, Zhang J, Hermanowicz SW (2014) Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem Eng J 257:98–104CrossRef
20.
go back to reference Sun Y, Li J, Huang T, Guan X (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Res 100:277–295CrossRef Sun Y, Li J, Huang T, Guan X (2016) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Res 100:277–295CrossRef
21.
go back to reference Tang L, Feng H, Tang J, Zeng G, Deng Y, Wang J, Liu Y, Zhou Y (2017) Treatment of arsenic in acid wastewater and river sediment by Fe@ Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Res 117:175–186CrossRef Tang L, Feng H, Tang J, Zeng G, Deng Y, Wang J, Liu Y, Zhou Y (2017) Treatment of arsenic in acid wastewater and river sediment by Fe@ Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Res 117:175–186CrossRef
22.
go back to reference Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MA, Sornalingam K, Belhaj D, Kallel M (2017) Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chem Eng J 322:571–581CrossRef Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MA, Sornalingam K, Belhaj D, Kallel M (2017) Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite. Chem Eng J 322:571–581CrossRef
23.
go back to reference Babuponnusami A, Muthukumar K (2013) Treatment of phenol-containing wastewater by photoelectro-Fenton method using supported nanoscale zero-valent iron. Environ Sci Pollut R 20:1596–1605CrossRef Babuponnusami A, Muthukumar K (2013) Treatment of phenol-containing wastewater by photoelectro-Fenton method using supported nanoscale zero-valent iron. Environ Sci Pollut R 20:1596–1605CrossRef
24.
go back to reference Wang W, Zhou M (2010) Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Colloid Surf A 369:232–239CrossRef Wang W, Zhou M (2010) Degradation of trichloroethylene using solvent-responsive polymer coated Fe nanoparticles. Colloid Surf A 369:232–239CrossRef
25.
go back to reference Fu Y, Peng L, Zeng Q, Yang Y, Song H, Shao J, Liu S, Gu J (2015) High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem Eng J 270:631–640CrossRef Fu Y, Peng L, Zeng Q, Yang Y, Song H, Shao J, Liu S, Gu J (2015) High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron. Chem Eng J 270:631–640CrossRef
26.
go back to reference Tian H, Liang Y, Zhu T, Zeng X, Sun Y (2018) Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil. Chemosphere 195:585–593CrossRef Tian H, Liang Y, Zhu T, Zeng X, Sun Y (2018) Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil. Chemosphere 195:585–593CrossRef
27.
go back to reference Aslan S, Yalçin K, Hanay Ö, Yildiz B (2016) Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle. Desalin Water Treat 57:14762–14773CrossRef Aslan S, Yalçin K, Hanay Ö, Yildiz B (2016) Removal of tetracyclines from aqueous solution by nanoscale Cu/Fe bimetallic particle. Desalin Water Treat 57:14762–14773CrossRef
28.
go back to reference Busch J, Meißner T, Potthoff A, Bleyl S, Georgi A, Mackenzie K, Trabitzsch R, Werban U, Oswald SE (2015) A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J Contam Hydrol 181:59–68CrossRef Busch J, Meißner T, Potthoff A, Bleyl S, Georgi A, Mackenzie K, Trabitzsch R, Werban U, Oswald SE (2015) A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J Contam Hydrol 181:59–68CrossRef
29.
go back to reference Zhang S, Zeng M, Li J, Li J, Xu J, Wang X (2014) Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. J Mater Chem A 2:4391–4397CrossRef Zhang S, Zeng M, Li J, Li J, Xu J, Wang X (2014) Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. J Mater Chem A 2:4391–4397CrossRef
30.
go back to reference Guler UA (2017) Removal of tetracycline from aqueous solutions using nanoscale zero valent iron and functional pumice modified nanoscale zero valent iron. J Environ Eng Landsc 25:223–233CrossRef Guler UA (2017) Removal of tetracycline from aqueous solutions using nanoscale zero valent iron and functional pumice modified nanoscale zero valent iron. J Environ Eng Landsc 25:223–233CrossRef
31.
go back to reference Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRef Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRef
32.
go back to reference Weng X, Cai W, Lin S, Chen Z (2017) Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 147:137–142CrossRef Weng X, Cai W, Lin S, Chen Z (2017) Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 147:137–142CrossRef
33.
go back to reference Chen Z, Jin X, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interf Sci 363:601–607CrossRef Chen Z, Jin X, Chen Z, Megharaj M, Naidu R (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interf Sci 363:601–607CrossRef
34.
go back to reference Luo S, Qin P, Shao J, Peng L, Zeng Q, Gu JD (2013) Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chem Eng J 223:1–7CrossRef Luo S, Qin P, Shao J, Peng L, Zeng Q, Gu JD (2013) Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chem Eng J 223:1–7CrossRef
35.
go back to reference Yuan N, Zhang G, Guo S, Wan Z (2016) Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron. Ultrason Sonochem 28:62–68CrossRef Yuan N, Zhang G, Guo S, Wan Z (2016) Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron. Ultrason Sonochem 28:62–68CrossRef
36.
go back to reference Daneshkhah M, Hossaini H, Malakootian M (2017) Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron. J Environ Chem Eng 5:3490–3499CrossRef Daneshkhah M, Hossaini H, Malakootian M (2017) Removal of metoprolol from water by sepiolite-supported nanoscale zero-valent iron. J Environ Chem Eng 5:3490–3499CrossRef
37.
go back to reference Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRef Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRef
38.
go back to reference Bruton TA, Pycke BF, Halden RU (2015) Effect of nanoscale zero-valent iron treatment on biological reductive dechlorination: a review of current understanding and research needs. Crit Rev Environ Sci Technol 45:1148–1175CrossRef Bruton TA, Pycke BF, Halden RU (2015) Effect of nanoscale zero-valent iron treatment on biological reductive dechlorination: a review of current understanding and research needs. Crit Rev Environ Sci Technol 45:1148–1175CrossRef
39.
go back to reference Liu X, Cao Z, Yuan Z, Zhang J, Guo X, Yang Y, He F, Zhao Y, Xu J (2018) Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem Eng J 334:508–518CrossRef Liu X, Cao Z, Yuan Z, Zhang J, Guo X, Yang Y, He F, Zhao Y, Xu J (2018) Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron. Chem Eng J 334:508–518CrossRef
40.
go back to reference Fang Z, Qiu X, Chen J, Qiu X (2010) Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Catal B Environ 100:221–228CrossRef Fang Z, Qiu X, Chen J, Qiu X (2010) Degradation of metronidazole by nanoscale zero-valent metal prepared from steel pickling waste liquor. Appl Catal B Environ 100:221–228CrossRef
41.
go back to reference Pan X, Lv N, Li C, Ning J, Wang T, Wang R, Zhou M, Zhu G (2019) Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem Eng J 359:662–671CrossRef Pan X, Lv N, Li C, Ning J, Wang T, Wang R, Zhou M, Zhu G (2019) Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion. Chem Eng J 359:662–671CrossRef
42.
go back to reference Diao Z, Qian W, Lei Z, Kong L, Du J, Liu H, Yang J, Pu S (2019) Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: reactivity, products, and mechanism. Sci Total Environ 660:541–549CrossRef Diao Z, Qian W, Lei Z, Kong L, Du J, Liu H, Yang J, Pu S (2019) Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: reactivity, products, and mechanism. Sci Total Environ 660:541–549CrossRef
43.
go back to reference Yan W, Lien HL, Koel BE, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77CrossRef Yan W, Lien HL, Koel BE, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77CrossRef
44.
go back to reference Zhou L, Le Thanh T, Gong J, Kim JH, Kim EJ, Chang YS (2014) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere 104:155–161CrossRef Zhou L, Le Thanh T, Gong J, Kim JH, Kim EJ, Chang YS (2014) Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere 104:155–161CrossRef
45.
go back to reference Diao ZH, Xu XR, Chen H, Jiang D, Yang YX, Kong LJ, Sun YX, Hu YX, Hao QW, Liu L (2016) Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism. J Hazard Mater 316:186–193CrossRef Diao ZH, Xu XR, Chen H, Jiang D, Yang YX, Kong LJ, Sun YX, Hu YX, Hao QW, Liu L (2016) Simultaneous removal of Cr(VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism. J Hazard Mater 316:186–193CrossRef
46.
go back to reference Singh KP, Singh AK, Gupta S, Rai P (2012) Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ Sci Pollut R 19:2063–2078CrossRef Singh KP, Singh AK, Gupta S, Rai P (2012) Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ Sci Pollut R 19:2063–2078CrossRef
47.
go back to reference Xu J, Cao Z, Wang Y, Zhang Y, Gao X, Ahmed MB, Zhang J, Yang Y, Zhou JL, Lowry GV (2019) Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chem Eng J 359:713–722CrossRef Xu J, Cao Z, Wang Y, Zhang Y, Gao X, Ahmed MB, Zhang J, Yang Y, Zhou JL, Lowry GV (2019) Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol. Chem Eng J 359:713–722CrossRef
48.
go back to reference Cao J, Lai L, Lai B, Yao G, Chen X, Song L (2019) Degradation of tetracycline by peroxymonosulfate activated with zerovalent iron: performance, intermediates, toxicity and mechanism. Chem Eng J 364:45–56CrossRef Cao J, Lai L, Lai B, Yao G, Chen X, Song L (2019) Degradation of tetracycline by peroxymonosulfate activated with zerovalent iron: performance, intermediates, toxicity and mechanism. Chem Eng J 364:45–56CrossRef
49.
go back to reference Wang X, Liu P, Ma J, Liu H (2017) Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized NZVI for reductive transformation of metronidazole. Appl Surf Sci 396:841–850CrossRef Wang X, Liu P, Ma J, Liu H (2017) Preparation of novel composites based on hydrophilized and functionalized polyacrylonitrile membrane-immobilized NZVI for reductive transformation of metronidazole. Appl Surf Sci 396:841–850CrossRef
50.
go back to reference Yang J, Wang X, Zhu M, Liu H, Ma J (2014) Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics. J Hazard Mater 264:269–277CrossRef Yang J, Wang X, Zhu M, Liu H, Ma J (2014) Investigation of PAA/PVDF–NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics. J Hazard Mater 264:269–277CrossRef
51.
go back to reference Khalil AME, Eljamal O, Amen TWM, Sugihara Y, Matsunaga N (2017) Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J 309:349–365CrossRef Khalil AME, Eljamal O, Amen TWM, Sugihara Y, Matsunaga N (2017) Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J 309:349–365CrossRef
52.
go back to reference Wang X, Du Y, Ma J (2016) Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole. Appl Surf Sci 390:50–59CrossRef Wang X, Du Y, Ma J (2016) Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole. Appl Surf Sci 390:50–59CrossRef
53.
go back to reference Xu J, Cao Z, Liu X, Zhao H, Xiao X, Wu J, Xu X, Zhou J (2016) Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: interactions, influence factors, and kinetics. J Hazard Mater 317:656–666CrossRef Xu J, Cao Z, Liu X, Zhao H, Xiao X, Wu J, Xu X, Zhou J (2016) Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: interactions, influence factors, and kinetics. J Hazard Mater 317:656–666CrossRef
54.
go back to reference Xu J, Sheng T, Hu Y, Baig SA, Lv X, Xu X (2013) Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chem Eng J 219:162–173CrossRef Xu J, Sheng T, Hu Y, Baig SA, Lv X, Xu X (2013) Adsorption–dechlorination of 2,4-dichlorophenol using two specified MWCNTs-stabilized Pd/Fe nanocomposites. Chem Eng J 219:162–173CrossRef
55.
go back to reference Xu J, Liu X, Lowry GV, Cao Z, Zhao H, Zhou J, Xu X (2016) Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol. ACS Appl Mater Interfaces 23:7333–7342CrossRef Xu J, Liu X, Lowry GV, Cao Z, Zhao H, Zhou J, Xu X (2016) Dechlorination mechanism of 2,4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: rapid adsorption, gradual dechlorination, and desorption of phenol. ACS Appl Mater Interfaces 23:7333–7342CrossRef
56.
go back to reference Busch J, Meißner T, Potthoff A, Oswald SE (2014) Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. J Contam Hydrol 164:25–34CrossRef Busch J, Meißner T, Potthoff A, Oswald SE (2014) Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media. J Contam Hydrol 164:25–34CrossRef
57.
go back to reference Habish AJ, Lazarević S, Janković-Častvan I, Jokić B, Kovač J, Rogan J, Janaćković Đ, Petrović R (2017) Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption. Environ Sci Pollut R 24:628–643CrossRef Habish AJ, Lazarević S, Janković-Častvan I, Jokić B, Kovač J, Rogan J, Janaćković Đ, Petrović R (2017) Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption. Environ Sci Pollut R 24:628–643CrossRef
58.
go back to reference Bagbi Y, Sarswat A, Tiwari S, Mohan D, Pandey A, Solanki PR (2017) Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. Environ Nanotechnol Monit Manag 7:34–45 Bagbi Y, Sarswat A, Tiwari S, Mohan D, Pandey A, Solanki PR (2017) Synthesis of l-cysteine stabilized zero-valent iron (nZVI) nanoparticles for lead remediation from water. Environ Nanotechnol Monit Manag 7:34–45
59.
go back to reference Sheng G, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X, Li H, Huang Y (2016) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99:123–130CrossRef Sheng G, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang X, Li H, Huang Y (2016) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99:123–130CrossRef
60.
go back to reference Jia H, Wang C (2013) Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environ Technol 34:25–33CrossRef Jia H, Wang C (2013) Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environ Technol 34:25–33CrossRef
61.
go back to reference Danish M, Gu X, Lu S, Naqvi M (2016) Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ Sci Pollut R 23:13298–13307CrossRef Danish M, Gu X, Lu S, Naqvi M (2016) Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ Sci Pollut R 23:13298–13307CrossRef
62.
go back to reference Jia H, Wang C (2012) Adsorption and dechlorination of 2, 4-dichlorophenol (2, 4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. Chem Eng J 191:202–209CrossRef Jia H, Wang C (2012) Adsorption and dechlorination of 2, 4-dichlorophenol (2, 4-DCP) on a multi-functional organo-smectite templated zero-valent iron composite. Chem Eng J 191:202–209CrossRef
63.
go back to reference Peng X, Liu X, Zhou Y, Peng B, Tang L, Luo L, Yao B, Deng Y, Tang J, Zeng G (2017) New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Adv 7:8755–8761CrossRef Peng X, Liu X, Zhou Y, Peng B, Tang L, Luo L, Yao B, Deng Y, Tang J, Zeng G (2017) New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Adv 7:8755–8761CrossRef
64.
go back to reference Weng X, Chen Z, Chen Z, Megharaj M, Naidu R (2014) Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: characterization and kinetics. Colloid Surf A 443:404–409CrossRef Weng X, Chen Z, Chen Z, Megharaj M, Naidu R (2014) Clay supported bimetallic Fe/Ni nanoparticles used for reductive degradation of amoxicillin in aqueous solution: characterization and kinetics. Colloid Surf A 443:404–409CrossRef
65.
go back to reference Bonaiti S, Calderon B, Collina E, Lasagni M, Mezzanotte V, Aracil I, Fullana A (2017) Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal. Earth Environ Sci 64:1–5 Bonaiti S, Calderon B, Collina E, Lasagni M, Mezzanotte V, Aracil I, Fullana A (2017) Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal. Earth Environ Sci 64:1–5
66.
go back to reference Shanbhogue SS, Bezbaruah A, Simsek S, Khan E (2017) Trichloroethene removal by separately encapsulated and coencapsulated bacterial degraders and nanoscale zero-valent iron. Int Biodeter Biodegr 125:269–276CrossRef Shanbhogue SS, Bezbaruah A, Simsek S, Khan E (2017) Trichloroethene removal by separately encapsulated and coencapsulated bacterial degraders and nanoscale zero-valent iron. Int Biodeter Biodegr 125:269–276CrossRef
67.
go back to reference Pirsaheb M, Moradi S, Shahlaei M, Wang X, Farhadian N (2019) A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water. J Clean Prod 209:1523–1532CrossRef Pirsaheb M, Moradi S, Shahlaei M, Wang X, Farhadian N (2019) A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water. J Clean Prod 209:1523–1532CrossRef
68.
go back to reference Liu W, Ma J, Shen C, Wen Y, Liu W (2016) A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Res 90:24–33CrossRef Liu W, Ma J, Shen C, Wen Y, Liu W (2016) A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. Water Res 90:24–33CrossRef
69.
go back to reference Wei D, Wu S, Zhu Y (2017) Magnetic solid phase extraction based on graphene oxide/nanoscale zero-valent iron for the determination of tetracyclines in water and milk by using HPLC-MS/MS. RSC Adv 7:44578–44586CrossRef Wei D, Wu S, Zhu Y (2017) Magnetic solid phase extraction based on graphene oxide/nanoscale zero-valent iron for the determination of tetracyclines in water and milk by using HPLC-MS/MS. RSC Adv 7:44578–44586CrossRef
70.
go back to reference Yu JG, Zhao XH, Yang H, Chen XH, Yang Q, Yu LY, Jiang JH, Chen XQ (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482:241–251CrossRef Yu JG, Zhao XH, Yang H, Chen XH, Yang Q, Yu LY, Jiang JH, Chen XQ (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482:241–251CrossRef
71.
go back to reference Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y, Gong B (2017) Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism. J Hazard Mater 339:22–32CrossRef Guo Y, Huang W, Chen B, Zhao Y, Liu D, Sun Y, Gong B (2017) Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism. J Hazard Mater 339:22–32CrossRef
72.
go back to reference Zhang W, Gao H, He J, Yang P, Wang D, Ma T, Xia H, Xu X (2017) Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway. Sep Purif Technol 172:158–167CrossRef Zhang W, Gao H, He J, Yang P, Wang D, Ma T, Xia H, Xu X (2017) Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway. Sep Purif Technol 172:158–167CrossRef
73.
go back to reference Wang X, Wang A, Lu M, Ma J (2018) Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J 337:372–384CrossRef Wang X, Wang A, Lu M, Ma J (2018) Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole. Chem Eng J 337:372–384CrossRef
74.
go back to reference Wang X, Wang A, Ma J (2017) Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. J Hazard Mater 336:81–92CrossRef Wang X, Wang A, Ma J (2017) Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. J Hazard Mater 336:81–92CrossRef
75.
go back to reference Chu W, Ding S, Bond T, Gao N, Yin D, Xu B, Cao Z (2016) Zero valent iron produces dichloroacetamide from chloramphenicol antibiotics in the absence of chlorine and chloramines. Water Res 104:254–261CrossRef Chu W, Ding S, Bond T, Gao N, Yin D, Xu B, Cao Z (2016) Zero valent iron produces dichloroacetamide from chloramphenicol antibiotics in the absence of chlorine and chloramines. Water Res 104:254–261CrossRef
76.
go back to reference Wei J, Qian Y, Liu W, Wang L, Ge Y, Zhang J, Yu J, Ma X (2014) Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe. J Environ Sci 26:1162–1170CrossRef Wei J, Qian Y, Liu W, Wang L, Ge Y, Zhang J, Yu J, Ma X (2014) Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe. J Environ Sci 26:1162–1170CrossRef
77.
go back to reference Kim HS, Ahn JY, Kim C, Lee S, Hwang I (2014) Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere 113:93–100CrossRef Kim HS, Ahn JY, Kim C, Lee S, Hwang I (2014) Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid. Chemosphere 113:93–100CrossRef
78.
go back to reference Liu Y, Zha S, Rajarathnam D, Chen Z (2017) Divalent cations impacting on Fenton-like oxidation of amoxicillin using nZVI as a heterogeneous catalyst. Sep Purif Technol 188:548–552CrossRef Liu Y, Zha S, Rajarathnam D, Chen Z (2017) Divalent cations impacting on Fenton-like oxidation of amoxicillin using nZVI as a heterogeneous catalyst. Sep Purif Technol 188:548–552CrossRef
79.
go back to reference Yi X, Tran NH, Yin T, He Y, Gin KYH (2017) Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res 121:46–60CrossRef Yi X, Tran NH, Yin T, He Y, Gin KYH (2017) Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res 121:46–60CrossRef
80.
go back to reference Llorca M, Farré M, Eljarrat E, Díaz-Cruz S, Rodríguez-Mozaz S, Wunderlin D, Barcelo D (2017) Review of emerging contaminants in aquatic biota from Latin America: 2002–2016. Environ Toxicol Chem 36:1716–1727CrossRef Llorca M, Farré M, Eljarrat E, Díaz-Cruz S, Rodríguez-Mozaz S, Wunderlin D, Barcelo D (2017) Review of emerging contaminants in aquatic biota from Latin America: 2002–2016. Environ Toxicol Chem 36:1716–1727CrossRef
81.
go back to reference Albero B, Sánchez-Brunete C, Miguel E, Tadeo JL (2017) Application of matrix solid-phase dispersion followed by GC–MS/MS to the analysis of emerging contaminants in vegetables. Food Chem 217:660–667CrossRef Albero B, Sánchez-Brunete C, Miguel E, Tadeo JL (2017) Application of matrix solid-phase dispersion followed by GC–MS/MS to the analysis of emerging contaminants in vegetables. Food Chem 217:660–667CrossRef
82.
go back to reference Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRef Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRef
83.
go back to reference Zha S, Cheng Y, Gao Y, Chen Z, Megharaj M, Naidu R (2014) Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J 255:141–148CrossRef Zha S, Cheng Y, Gao Y, Chen Z, Megharaj M, Naidu R (2014) Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J 255:141–148CrossRef
84.
go back to reference Wu Y, Yue Q, Gao Y, Ren Z, Gao B (2017) Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP). J Mol Liq 262:19–28CrossRef Wu Y, Yue Q, Gao Y, Ren Z, Gao B (2017) Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP). J Mol Liq 262:19–28CrossRef
Metadata
Title
Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review
Authors
Yuzhou Zhou
Ting Wang
Dan Zhi
Binglin Guo
Yaoyu Zhou
Jing Nie
Anqi Huang
Yuan Yang
Hongli Huang
Lin Luo
Publication date
15-04-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03606-5

Other articles of this Issue 19/2019

Journal of Materials Science 19/2019 Go to the issue

Premium Partners