Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Applications of Printed 2D Materials

Authors : Leonard W. T. Ng, Guohua Hu, Richard C. T. Howe, Xiaoxi Zhu, Zongyin Yang, Christopher G. Jones, Tawfique Hasan

Published in: Printing of Graphene and Related 2D Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The primary goal of this book is to comprehensively review 2D materials that have gained research interest and present the use of printing as a low-cost, high-throughput method of exploiting 2D materials in mass produced devices and components. This chapter covers the existing demonstrations of printed 2D materials in a wide variety of devices and summarises their current status. In addition, this chapter also discusses the state-of-the-art literature on the trends and development stages, future technology directions and their likely convergence for next generation of applications, devices and systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRef G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe, C. Jones, M.C. Hersam, T. Hasan, Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47(9), 3265–3300 (2018)CrossRef
2.
go back to reference E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4(8), 1347–1351 (2013)CrossRef
3.
go back to reference E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef E.B. Secor, S. Lim, H. Zhang, C.D. Frisbie, L.F. Francis, M.C. Hersam, Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26(26), 4533–4538 (2014)CrossRef
4.
go back to reference E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, M.C. Hersam, Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27(42), 6683–6688 (2015)CrossRef
5.
go back to reference K. Arapov, G. Bex, R. Hendriks, E. Rubingh, R. Abbel, G. de With, H. Friedrich, Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18(7), 1234–1239 (2016)CrossRef K. Arapov, G. Bex, R. Hendriks, E. Rubingh, R. Abbel, G. de With, H. Friedrich, Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18(7), 1234–1239 (2016)CrossRef
6.
go back to reference X. Huang, T. Leng, X. Zhang, J.C. Chen, K.H. Chang, A.K. Geim, K.S. Novoselov, Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 106(20), 203105 (2015)CrossRef X. Huang, T. Leng, X. Zhang, J.C. Chen, K.H. Chang, A.K. Geim, K.S. Novoselov, Z. Hu, Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl. Phys. Lett. 106(20), 203105 (2015)CrossRef
7.
go back to reference P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742–2755 (2017)CrossRef P.G. Karagiannidis, S.A. Hodge, L. Lombardi, F. Tomarchio, N. Decorde, S. Milana, I. Goykhman, Y. Su, S.V. Mesite, D.N. Johnstone, R.K. Leary, P.A. Midgley, N.M. Pugno, F. Torrisi, A.C. Ferrari, Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742–2755 (2017)CrossRef
8.
go back to reference W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015)CrossRef W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie, L.F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27(1), 109–115 (2015)CrossRef
9.
go back to reference R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)CrossRef R.C.T. Howe, G. Hu, Z. Yang, T. Hasan, Functional inks of graphene, metal dichalcogenides and black phosphorus for photonics and (opto)electronics. Proc. SPIE 9553, 95530R (2015)CrossRef
10.
go back to reference D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992)MATH D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992)MATH
11.
go back to reference J. Li, J.K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007)CrossRef J. Li, J.K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114–2120 (2007)CrossRef
12.
go back to reference P.J. Brigandi, J.M. Cogen, R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 54(1), 1–16 (2014)CrossRef P.J. Brigandi, J.M. Cogen, R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 54(1), 1–16 (2014)CrossRef
13.
go back to reference S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)CrossRef S. Santra, G. Hu, R.C.T. Howe, A. De Luca, S.Z. Ali, F. Udrea, J.W. Gardner, S.K. Ray, P.K. Guha, T. Hasan, CMOS integration of inkjet-printed graphene for humidity sensing. Sci. Rep. 5, 17374 (2015)CrossRef
14.
go back to reference A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRef A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, F. Bonaccorso, Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun. 224, 53–63 (2015)CrossRef
15.
go back to reference G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72(3), 953–959 (1992)CrossRef G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72(3), 953–959 (1992)CrossRef
16.
go back to reference A. Dani, A.A. Ogale, Electrical percolation behavior of short-fiber composites: experimental characterization and modeling. Compos. Sci. Technol. 56(8), 911–920 (1996)CrossRef A. Dani, A.A. Ogale, Electrical percolation behavior of short-fiber composites: experimental characterization and modeling. Compos. Sci. Technol. 56(8), 911–920 (1996)CrossRef
17.
go back to reference A.R. Madaria, A. Kumar, F.N. Ishikawa, C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3(8), 564–573 (2010)CrossRef A.R. Madaria, A. Kumar, F.N. Ishikawa, C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3(8), 564–573 (2010)CrossRef
18.
go back to reference G.E. Pike, C.H. Seager, Percolation and conductivity: a computer study. I. Phys. Rev. B 10(4), 1421–1434 (1974)CrossRef G.E. Pike, C.H. Seager, Percolation and conductivity: a computer study. I. Phys. Rev. B 10(4), 1421–1434 (1974)CrossRef
19.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)CrossRef F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010)CrossRef
20.
go back to reference F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRef F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, A.C. Ferrari, Production and processing of graphene and 2D crystals. Mater. Today 15(12), 564–589 (2012)CrossRef
21.
go back to reference S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRef S. De, J.N. Coleman, Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4(5), 2713–2720 (2010)CrossRef
22.
go back to reference S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
23.
go back to reference S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRef S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N Coleman, Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 6(3), 458–464 (2010)CrossRef
24.
go back to reference K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009)CrossRef
25.
go back to reference C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRef C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)CrossRef
26.
go back to reference M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRef M.S. Kang, K.T. Kim, J.U. Lee, W.H. Jo, Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J. Mater. Chem. C 1(9), 1870 (2013)CrossRef
27.
go back to reference G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)CrossRef
28.
go back to reference X. Ho, J. Wei, Films of carbon nanomaterials for transparent conductors. Materials 6(6), 2155–2181 (2013)CrossRef X. Ho, J. Wei, Films of carbon nanomaterials for transparent conductors. Materials 6(6), 2155–2181 (2013)CrossRef
29.
go back to reference D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)CrossRef D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)CrossRef
30.
go back to reference X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRef X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24(45), 5979–6004 (2012)CrossRef
31.
go back to reference C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91(17), 1529–1598 (2007)CrossRef C.G. Granqvist, Transparent conductors as solar energy materials: a panoramic review. Sol. Energy Mater. Sol. Cells 91(17), 1529–1598 (2007)CrossRef
32.
go back to reference I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient smart windows. J. Appl. Phys. 60, 123–159 (1986)CrossRef I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient smart windows. J. Appl. Phys. 60, 123–159 (1986)CrossRef
33.
go back to reference T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35–S44 (2005)MathSciNetCrossRef T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35–S44 (2005)MathSciNetCrossRef
34.
go back to reference L. Holland, G. Siddall, The properties of some reactively sputtered metal oxide films. Vacuum 3(4), 375–391 (1953)CrossRef L. Holland, G. Siddall, The properties of some reactively sputtered metal oxide films. Vacuum 3(4), 375–391 (1953)CrossRef
35.
go back to reference D. Ginley, H. Hosono, D.C. Paine (eds.), Handbook of Transparent Conductors (Springer, Berlin, 2011) D. Ginley, H. Hosono, D.C. Paine (eds.), Handbook of Transparent Conductors (Springer, Berlin, 2011)
36.
go back to reference X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRef
37.
go back to reference P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device. Nano Lett. 8(6), 1704–1708 (2008)CrossRef P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Graphene-based liquid crystal device. Nano Lett. 8(6), 1704–1708 (2008)CrossRef
38.
go back to reference Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)CrossRef
39.
go back to reference L.J. Cote, F. Kim, J. Huang, Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009)CrossRef L.J. Cote, F. Kim, J. Huang, Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043–1049 (2009)CrossRef
40.
go back to reference F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, D. Chu, A.C. Ferrari, Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)CrossRef
41.
go back to reference A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRef A.A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9(12), 4031–4036 (2009)CrossRef
42.
go back to reference N.D. Matyba, P. Yamaguchi, H. Eda, G. Chhowalla, M. Edman, L.Y. Robinson, Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano 4(2), 637–642 (2010)CrossRef N.D. Matyba, P. Yamaguchi, H. Eda, G. Chhowalla, M. Edman, L.Y. Robinson, Graphene and mobile ions: the key to all plastic, solution processed light emitting devices. ACS Nano 4(2), 637–642 (2010)CrossRef
43.
go back to reference S. Forget, S. Chenais, A. Siove, Organic light-emitting diodes. Photochem. Photophys. Polym. Mater. 4(1), 309–350 (2010) S. Forget, S. Chenais, A. Siove, Organic light-emitting diodes. Photochem. Photophys. Polym. Mater. 4(1), 309–350 (2010)
44.
go back to reference K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016)CrossRef K. Hantanasirisakul, M.-Q. Zhao, P. Urbankowski, J. Halim, B. Anasori, S. Kota, C.E. Ren, M.W. Barsoum, Y. Gogotsi, Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016)CrossRef
45.
go back to reference R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979)CrossRef R.A. Matula, Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 8(4), 1147–1298 (1979)CrossRef
46.
go back to reference E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29(5), 2332–2340 (2017)CrossRef E.B. Secor, T.Z. Gao, A.E. Islam, R. Rao, S.G. Wallace, J. Zhu, K.W. Putz, B. Maruyama, M.C. Hersam, Enhanced conductivity, adhesion, and environmental stability of printed graphene inks with nitrocellulose. Chem. Mater. 29(5), 2332–2340 (2017)CrossRef
47.
go back to reference R.H. Leach, R.J. Pierce, E.P. Hickman, M.J. Mackenzie, H.G. Smith (eds.), The Printing Ink Manual, 5th edn. (Springer, Dordrecht, 1993) R.H. Leach, R.J. Pierce, E.P. Hickman, M.J. Mackenzie, H.G. Smith (eds.), The Printing Ink Manual, 5th edn. (Springer, Dordrecht, 1993)
48.
go back to reference H. Kipphan (ed.), Handbook of Print Media: Technologies and Production Methods (Springer, Berlin, 2001) H. Kipphan (ed.), Handbook of Print Media: Technologies and Production Methods (Springer, Berlin, 2001)
49.
go back to reference F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)CrossRef F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)CrossRef
50.
go back to reference M.A.M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Anselmann, Printable electronics: flexibility for the future. Phys. Status Solidi 206(4), 588–597 (2009)CrossRef M.A.M. Leenen, V. Arning, H. Thiem, J. Steiger, R. Anselmann, Printable electronics: flexibility for the future. Phys. Status Solidi 206(4), 588–597 (2009)CrossRef
51.
go back to reference F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)CrossRef F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014)CrossRef
52.
go back to reference A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
53.
go back to reference V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman. Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRef V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman. Liquid exfoliation of layered materials. Science 340(6139), 1226419–1226437 (2013)CrossRef
54.
go back to reference A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRef A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11), 4598–4810 (2015)CrossRef
55.
go back to reference A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef A.G. Kelly, T. Hallam, C. Backes, A. Harvey, A.S. Esmaeily, I. Godwin, J. Coelho, V. Nicolosi, J. Lauth, A. Kulkarni, S. Kinge, L.D.A. Siebbeles, G.S. Duesberg, J.N. Coleman, All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356(6333), 69–73 (2017)CrossRef
56.
go back to reference D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef D. McManus, S. Vranic, F. Withers, V. Sanchez-Romaguera, M. Macucci, H. Yang, R. Sorrentino, K. Parvez, S.-K. Son, G. Iannaccone, K. Kostarelos, G. Fiori, C. Casiraghi, Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12(4), 343–350 (2017)CrossRef
57.
go back to reference G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017) G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R.C.T. Howe, K. Shehzad, Z. Yang, X. Zhu, R.I. Woodward, T.-C. Wu, H. Jussila, J.-B. Wu, P. Peng, P.-H. Tan, Z. Sun, E.J.R. Kelleher, M. Zhang, Y. Xu, T. Hasan, Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8(1), 278 (2017)
58.
go back to reference T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J.M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi, Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8(1), 1202 (2017) T. Carey, S. Cacovich, G. Divitini, J. Ren, A. Mansouri, J.M. Kim, C. Wang, C. Ducati, R. Sordan, F. Torrisi, Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8(1), 1202 (2017)
59.
go back to reference H. Sirringhaus, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)CrossRef H. Sirringhaus, 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26(9), 1319–1335 (2014)CrossRef
60.
go back to reference K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran, T. Sekine, M. Mizukami, D. Kumaki, S. Tokito, Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014)CrossRef K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran, T. Sekine, M. Mizukami, D. Kumaki, S. Tokito, Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014)CrossRef
61.
go back to reference S. Oktyabrsky, P. Ye (eds.), Fundamentals of III-V Semiconductor MOSFETs (Springer US, Boston, 2010) S. Oktyabrsky, P. Ye (eds.), Fundamentals of III-V Semiconductor MOSFETs (Springer US, Boston, 2010)
62.
go back to reference B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)CrossRef
63.
go back to reference M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRef M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRef
64.
go back to reference D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRef D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, J.N. Coleman, Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J. Mater. Chem. C 2(5), 925–932 (2014)CrossRef
65.
go back to reference F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef F. Withers, H. Yang, L. Britnell, A.P. Rooney, E. Lewis, A. Felten, C.R. Woods, V. Sanchez Romaguera, T. Georgiou, A. Eckmann, Y.J. Kim, S.G. Yeates, S.J. Haigh, A.K. Geim, K.S. Novoselov, C. Casiraghi, Heterostructures produced from nanosheet-based inks. Nano Lett. 14(7), 3987–3992 (2014)CrossRef
66.
go back to reference Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E.J.R. Kelleher, J.C. Travers, V. Nicolosi, A.C. Ferrari, A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 3(9), 653–660 (2010)CrossRef Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E.J.R. Kelleher, J.C. Travers, V. Nicolosi, A.C. Ferrari, A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Res. 3(9), 653–660 (2010)CrossRef
67.
go back to reference M. Trushin, E.J.R. Kelleher, T. Hasan, Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes. Phys. Rev. B 94, 155301 (2016)CrossRef M. Trushin, E.J.R. Kelleher, T. Hasan, Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes. Phys. Rev. B 94, 155301 (2016)CrossRef
68.
go back to reference U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRef U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)CrossRef
69.
go back to reference R.I. Woodward, E.J. Kelleher, T.H. Runcorn, S.V. Popov, F. Torrisi, R.C.T. Howe, T. Hasan, Q-switched fiber laser with MoS2 saturable absorber, in CLEO: 2014, paper SM3H.6. OSA (2014) R.I. Woodward, E.J. Kelleher, T.H. Runcorn, S.V. Popov, F. Torrisi, R.C.T. Howe, T. Hasan, Q-switched fiber laser with MoS2 saturable absorber, in CLEO: 2014, paper SM3H.6. OSA (2014)
70.
go back to reference M. Zhang, L. Huang, J. Chen, C. Li, G. Shi, Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 26(45), 7588–7592 (2014)CrossRef M. Zhang, L. Huang, J. Chen, C. Li, G. Shi, Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 26(45), 7588–7592 (2014)CrossRef
71.
go back to reference R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRef R.I. Woodward, R.C.T. Howe, T.H. Runcorn, G. Hu, F. Torrisi, E.J.R. Kelleher, T. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er- and Tm-doped fiber lasers. Opt. Express 23(15), 20051 (2015)CrossRef
72.
go back to reference M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015)CrossRef M. Zhang, G. Hu, G. Hu, R.C.T. Howe, L. Chen, Z. Zheng, T. Hasan, Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber. Sci. Rep. 5, 17482 (2015)CrossRef
73.
go back to reference F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef F. Yavari, N. Koratkar, Graphene-based chemical sensors. J. Phys. Chem. Lett. 3(13), 1746–1753 (2012)CrossRef
74.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRef
75.
go back to reference M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRef M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012)CrossRef
76.
go back to reference K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017) K. Shehzad, T. Shi, A. Qadir, X. Wan, H. Guo, A. Ali, W. Xuan, H. Xu, Z. Gu, X. Peng, J. Xie, L. Sun, Q. He, Z. Xu, C. Gao, Y.-S. Rim, Y. Dan, T. Hasan, P. Tan, E. Li, W. Yin, Z. Cheng, B. Yu, Y. Xu, J. Luo, X. Duan, Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262 (2017)
77.
go back to reference Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang, Y. Chen, C.-P. Wong, High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23(28), 3577–3583 (2013)CrossRef Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang, Y. Chen, C.-P. Wong, High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23(28), 3577–3583 (2013)CrossRef
78.
go back to reference S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRef S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRef
79.
go back to reference P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P. O’Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599 (2018)CrossRef P. He, J.R. Brent, H. Ding, J. Yang, D.J. Lewis, P. O’Brien, B. Derby, Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 10, 5599 (2018)CrossRef
80.
go back to reference X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li, W.-Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7(24), 13707–13713 (2015)CrossRef X.-F. Yu, Y.-C. Li, J.-B. Cheng, Z.-B. Liu, Q.-Z. Li, W.-Z. Li, X. Yang, B. Xiao, Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 7(24), 13707–13713 (2015)CrossRef
81.
go back to reference S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)CrossRef S.J. Kim, H.-J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.-Y. Cho, B. Anasori, C.-K. Kim, Y.-K. Choi, J. Kim, Y. Gogotsi, H.-T. Jung, Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018)CrossRef
82.
go back to reference V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010)CrossRef V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010)CrossRef
83.
go back to reference M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 166–167, 172–176 (2012)CrossRef M.G. Chung, D.H. Kim, H.M. Lee, T. Kim, J.H. Choi, D.K. Seo, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 166–167, 172–176 (2012)CrossRef
84.
go back to reference L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 6(10), 7426–7433 (2014)CrossRef L. Huang, Z. Wang, J. Zhang, J. Pu, Y. Lin, S. Xu, L. Shen, Q. Chen, W. Shi, Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 6(10), 7426–7433 (2014)CrossRef
85.
go back to reference B.W. Kennedy, Thin film temperature sensor. Rev. Sci. Instrum. 40(9), 1169–1172 (1969)CrossRef B.W. Kennedy, Thin film temperature sensor. Rev. Sci. Instrum. 40(9), 1169–1172 (1969)CrossRef
86.
go back to reference W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma, S.H. Jin, Z. Kang, Y. Huang, J.A. Rogers, Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRef W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma, S.H. Jin, Z. Kang, Y. Huang, J.A. Rogers, Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)CrossRef
87.
go back to reference D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014)CrossRef D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee, C. Song, S.J. Kim, D.J. Lee, S.W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C.S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014)CrossRef
88.
go back to reference T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRef T. Juntunen, H. Jussila, M. Ruoho, S. Liu, G. Hu, T. Albrow-Owen, L.W.T. Ng, R.C.T. Howe, T. Hasan, Z. Sun, I. Tittonen, Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mat. 28(22), 1800480 (2018)CrossRef
89.
go back to reference C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT:PSS Mater. Today Proc. 3(3), 739–745 (2016)CrossRef C. Bali, A. Brandlmaier, A. Ganster, O. Raab, J. Zapf, A. Hübler, Fully inkjet-printed flexible temperature sensors based on carbon and PEDOT:PSS Mater. Today Proc. 3(3), 739–745 (2016)CrossRef
90.
go back to reference J.Y. Hong, W. Kim, D. Choi, J. Kong, H.S. Park, Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10, 9446–9455 (2016)CrossRef J.Y. Hong, W. Kim, D. Choi, J. Kong, H.S. Park, Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10, 9446–9455 (2016)CrossRef
91.
go back to reference K. Agarwal, V. Kaushik, D. Varandani, A. Dhar, B.R. Mehta, Nanoscale thermoelectric properties of Bi2Te3-graphene nanocomposites: conducting atomic force, scanning thermal and kelvin probe microscopy studies. J. Alloys Compd. 681, 394–401 (2016)CrossRef K. Agarwal, V. Kaushik, D. Varandani, A. Dhar, B.R. Mehta, Nanoscale thermoelectric properties of Bi2Te3-graphene nanocomposites: conducting atomic force, scanning thermal and kelvin probe microscopy studies. J. Alloys Compd. 681, 394–401 (2016)CrossRef
92.
go back to reference T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6(1), 35289 (2016) T. Vuorinen, J. Niittynen, T. Kankkunen, T.M. Kraft, M. Mäntysalo, Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 6(1), 35289 (2016)
93.
go back to reference D. Zang, M. Yan, S. Ge, L. Ge, J. Yu, A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs. Analyst 138, 2704–2711 (2013)CrossRef D. Zang, M. Yan, S. Ge, L. Ge, J. Yu, A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs. Analyst 138, 2704–2711 (2013)CrossRef
94.
go back to reference M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)CrossRef M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)CrossRef
95.
go back to reference E.E. Simmons Jr., Patent, US2393714A, Strain Gauge, 1941-07-23 E.E. Simmons Jr., Patent, US2393714A, Strain Gauge, 1941-07-23
96.
go back to reference B. Stephen, E. Graham, K. Michael, W. Neil, MEMS Mechanical Sensors (Artech House, London, 2004) B. Stephen, E. Graham, K. Michael, W. Neil, MEMS Mechanical Sensors (Artech House, London, 2004)
97.
go back to reference S.-H. Bae, Y. Lee, B.K. Sharma, H.-J. Lee, J.-H. Kim, J.-H. Ahn, Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013)CrossRef S.-H. Bae, Y. Lee, B.K. Sharma, H.-J. Lee, J.-H. Kim, J.-H. Ahn, Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013)CrossRef
98.
go back to reference Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)CrossRef Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu, H. Zhu, Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)CrossRef
99.
go back to reference M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRef M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012)CrossRef
100.
go back to reference V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21(34), 12626 (2011)CrossRef V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21(34), 12626 (2011)CrossRef
101.
go back to reference C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)CrossRef C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)CrossRef
102.
go back to reference C. Casiraghi, M. Macucci, K. Parvez, R. Worsley, Y. Shin, F. Bronte, C. Borri, M. Paggi, G. Fiori, Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018)CrossRef C. Casiraghi, M. Macucci, K. Parvez, R. Worsley, Y. Shin, F. Bronte, C. Borri, M. Paggi, G. Fiori, Inkjet printed 2D-crystal based strain gauges on paper. Carbon 129, 462–467 (2018)CrossRef
103.
go back to reference S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, C.P. Wong, Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl. Mater. Interfaces 9(14), 12147–12164 (2017)CrossRef S. Zhao, J. Li, D. Cao, G. Zhang, J. Li, K. Li, Y. Yang, W. Wang, Y. Jin, R. Sun, C.P. Wong, Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl. Mater. Interfaces 9(14), 12147–12164 (2017)CrossRef
104.
go back to reference K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016)CrossRef K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016)CrossRef
105.
go back to reference J. Li, F. Rossignol, J. Macdonald, Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15(12), 2538–2558 (2015)CrossRef J. Li, F. Rossignol, J. Macdonald, Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing. Lab Chip 15(12), 2538–2558 (2015)CrossRef
106.
go back to reference K. Haupt Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000)CrossRef K. Haupt Mosbach, Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000)CrossRef
107.
go back to reference F.Y. Kong, S.X. Gu, W.W. Li, T.T. Chen, Q. Xu, W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens. Bioelectron. 56, 77–82 (2014)CrossRef F.Y. Kong, S.X. Gu, W.W. Li, T.T. Chen, Q. Xu, W. Wang, A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens. Bioelectron. 56, 77–82 (2014)CrossRef
108.
go back to reference Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRef Z. Zhang, P. Pan, X. Liu, Z. Yang, J. Wei, Z. Wei, 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing. Mater. Chem. Phys. 187, 28–38 (2017)CrossRef
109.
go back to reference A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRef A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Electrochemistry of graphene and related materials. Chem. Rev. 114(14), 7150–7188 (2014)CrossRef
110.
go back to reference R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938 (2011)CrossRef R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials. J. Mater. Chem. 21(27), 9938 (2011)CrossRef
111.
go back to reference M. Yilmaz, P.T. Krein, Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28(5), 2151–2169 (2013)CrossRef M. Yilmaz, P.T. Krein, Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 28(5), 2151–2169 (2013)CrossRef
112.
go back to reference L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)CrossRef L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013)CrossRef
113.
go back to reference P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)CrossRef
114.
go back to reference Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRef
115.
go back to reference A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1(6), 621 (2008)CrossRef A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1(6), 621 (2008)CrossRef
116.
go back to reference A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRef A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005)CrossRef
117.
go back to reference C. Daniel, J.O. Besenhard (eds.), Handbook of Battery Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011) C. Daniel, J.O. Besenhard (eds.), Handbook of Battery Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)
118.
go back to reference P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 172 (2012)CrossRef P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 172 (2012)CrossRef
119.
go back to reference J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M.G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, V. Pellegrini, B. Scrosati, An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014)CrossRef J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M.G. Betti, R. Cingolani, M. Gemmi, C. Mariani, S. Panero, V. Pellegrini, B. Scrosati, An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014)CrossRef
120.
go back to reference B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017) B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017)
121.
go back to reference R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2014)CrossRef R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2014)CrossRef
122.
go back to reference X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013)CrossRef X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013)CrossRef
123.
go back to reference M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)CrossRef
124.
go back to reference T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling LiO2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRef T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim, C.P. Grey, Cycling LiO2 batteries via LiOH formation and decomposition. Science 350(6260), 530–533 (2015)CrossRef
125.
go back to reference J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRef J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)CrossRef
126.
go back to reference H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRef H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)CrossRef
127.
go back to reference Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRef Y. Dall’Agnese, P.-L. Taberna, Y. Gogotsi, P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)CrossRef
128.
go back to reference G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016)CrossRef G. Zou, Z. Zhang, J. Guo, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl. Mater. Interfaces 8(34), 22280–22286 (2016)CrossRef
129.
go back to reference Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014)CrossRef Z. Ling, C.E. Ren, M.-Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U.S.A. 111(47), 16676–16681 (2014)CrossRef
130.
go back to reference N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 6, 1601372 (2016)CrossRef N. Kurra, B. Ahmed, Y. Gogotsi, H.N. Alshareef, MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 6, 1601372 (2016)CrossRef
131.
go back to reference J. Li, V. Mishukova, M. Östling, All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes. Appl. Phys. Lett. 109(12), 123901 (2016)CrossRef J. Li, V. Mishukova, M. Östling, All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes. Appl. Phys. Lett. 109(12), 123901 (2016)CrossRef
132.
go back to reference G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009)CrossRef G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009)CrossRef
133.
go back to reference E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRef E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008)CrossRef
134.
go back to reference Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRef Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R.C. Kent, Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)CrossRef
135.
go back to reference J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, Sn4+Ion decorated highly conductive Ti3C2MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016)CrossRef J. Luo, X. Tao, J. Zhang, Y. Xia, H. Huang, L. Zhang, Y. Gan, C. Liang, W. Zhang, Sn4+Ion decorated highly conductive Ti3C2MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10(2), 2491–2499 (2016)CrossRef
136.
go back to reference X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015)CrossRef X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54(13), 3907–3911 (2015)CrossRef
137.
go back to reference X. Zhao, M. Liu, Y. Chen, B. Hou, N. Zhang, B. Chen, N. Yang, K. Chen, J. Li, L. An, Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3(15), 7870–7876 (2015)CrossRef X. Zhao, M. Liu, Y. Chen, B. Hou, N. Zhang, B. Chen, N. Yang, K. Chen, J. Li, L. An, Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A 3(15), 7870–7876 (2015)CrossRef
138.
go back to reference C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10(12), 4863–4868 (2010)CrossRef
139.
go back to reference M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRef M.D. Stoller, S. Park, Z. Yanwu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRef
140.
go back to reference L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, W.Y. Lee, Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13(4), 355–358 (2011)CrossRef
141.
go back to reference W.J. Hyun, E.B. Secor, C.-H. Kim, M.C. Hersam, L.F. Francis, C.D. Frisbie, Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 7(17), 1700285 (2017)CrossRef W.J. Hyun, E.B. Secor, C.-H. Kim, M.C. Hersam, L.F. Francis, C.D. Frisbie, Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 7(17), 1700285 (2017)CrossRef
142.
go back to reference A.M.A. Yeates, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, G. Stephen, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017) A.M.A. Yeates, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, G. Stephen, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Mater. 4(3), 35016 (2017)
143.
go back to reference M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326–1330 (2012)CrossRef
144.
go back to reference G.-T. Esther, B. Suelen, F. Jaime, B. Robert, E. Salvador, D. Eleonora, M.R. Christopher, G. Francisco, S. Eduardo, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRef G.-T. Esther, B. Suelen, F. Jaime, B. Robert, E. Salvador, D. Eleonora, M.R. Christopher, G. Francisco, S. Eduardo, Printing in three dimensions with graphene. Adv. Mater. 27(10), 1688–1693 (2015)CrossRef
145.
go back to reference Y. Lin, F. Liu, G. Casano, R. Bhavsar, I.A. Kinloch, B. Derby, Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28(36), 7993–8000 (2016)CrossRef Y. Lin, F. Liu, G. Casano, R. Bhavsar, I.A. Kinloch, B. Derby, Pristine graphene aerogels by room-temperature freeze gelation. Adv. Mater. 28(36), 7993–8000 (2016)CrossRef
146.
go back to reference C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016)CrossRef C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016)CrossRef
147.
go back to reference C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices. Sci. Rep. 7, 42233 (2017)CrossRef C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices. Sci. Rep. 7, 42233 (2017)CrossRef
148.
go back to reference S. Ke Wei, T.S. Ahn, B.Y. Seo, J.Y. Dillon, S.J. Lewis, A. Jennifer, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25(33), 4539–4543 (2013)CrossRef S. Ke Wei, T.S. Ahn, B.Y. Seo, J.Y. Dillon, S.J. Lewis, A. Jennifer, 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25(33), 4539–4543 (2013)CrossRef
149.
go back to reference F.K. Wang, Y. Yan, C. Yao, Y. Chen, Y. Dai, J. Lacey, S. Wang, Y. Wan, J. Li, T. Wang, Z. Xu, Y. Hu, Y. Liangbing, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRef F.K. Wang, Y. Yan, C. Yao, Y. Chen, Y. Dai, J. Lacey, S. Wang, Y. Wan, J. Li, T. Wang, Z. Xu, Y. Hu, Y. Liangbing, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28(13), 2587–2594 (2016)CrossRef
150.
go back to reference A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRef A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9(4), 4636–4648 (2015)CrossRef
151.
go back to reference B.P. Singh, S. Nayak, K.K. Nanda, B.K. Jena, S. Bhattacharjee, L. Besra, The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 61, 47–56 (2013)CrossRef B.P. Singh, S. Nayak, K.K. Nanda, B.K. Jena, S. Bhattacharjee, L. Besra, The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 61, 47–56 (2013)CrossRef
152.
go back to reference R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Protecting copper from electrochemical degradation by graphene coating. Carbon 50(11), 4040–4045 (2012)CrossRef R.K. Singh Raman, P. Chakraborty Banerjee, D.E. Lobo, H. Gullapalli, M. Sumandasa, A. Kumar, L. Choudhary, R. Tkacz, P.M. Ajayan, M. Majumder, Protecting copper from electrochemical degradation by graphene coating. Carbon 50(11), 4040–4045 (2012)CrossRef
153.
go back to reference N.T. Kirkland, T. Schiller, N. Medhekar, N. Birbilis, Exploring graphene as a corrosion protection barrier. Corros. Sci. 56, 1–4 (2012)CrossRef N.T. Kirkland, T. Schiller, N. Medhekar, N. Birbilis, Exploring graphene as a corrosion protection barrier. Corros. Sci. 56, 1–4 (2012)CrossRef
154.
go back to reference M. Topsakal, H. Aahin, S. Ciraci, Graphene coatings: an efficient protection from oxidation. Phys. Rev. B: Condens. Matter Mater. Phys. 85(15), 155445 (2012) M. Topsakal, H. Aahin, S. Ciraci, Graphene coatings: an efficient protection from oxidation. Phys. Rev. B: Condens. Matter Mater. Phys. 85(15), 155445 (2012)
155.
go back to reference M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7), 5763–5768 (2013)CrossRef M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7(7), 5763–5768 (2013)CrossRef
156.
go back to reference M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl. Mater. Interfaces 7(51), 28482–28493 (2015)CrossRef M.J. Nine, M.A. Cole, L. Johnson, D.N.H. Tran, D. Losic, Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl. Mater. Interfaces 7(51), 28482–28493 (2015)CrossRef
157.
go back to reference S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7(11), 728–732 (2012)CrossRef S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7(11), 728–732 (2012)CrossRef
158.
go back to reference V.R.S.S. Mokkapati, D.Y. Koseoglu-Imer, N. Yilmaz-Deveci, I. Mijakovic, I. Koyuncu, Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent RSC Adv. 7(8), 4378–4386 (2017)CrossRef V.R.S.S. Mokkapati, D.Y. Koseoglu-Imer, N. Yilmaz-Deveci, I. Mijakovic, I. Koyuncu, Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent RSC Adv. 7(8), 4378–4386 (2017)CrossRef
159.
go back to reference B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRef B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)CrossRef
160.
go back to reference L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)CrossRef L.C. Tang, Y.J. Wan, D. Yan, Y.B. Pei, L. Zhao, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)CrossRef
161.
go back to reference S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)CrossRef S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials-a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)CrossRef
162.
go back to reference W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRef W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)CrossRef
163.
go back to reference J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)CrossRef J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)CrossRef
164.
go back to reference R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRef R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172), 752–754 (2014)CrossRef
165.
go back to reference J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRef J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12(6), 546–550 (2017)CrossRef
166.
go back to reference L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017)CrossRef L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550(7676), 380–383 (2017)CrossRef
Metadata
Title
Applications of Printed 2D Materials
Authors
Leonard W. T. Ng
Guohua Hu
Richard C. T. Howe
Xiaoxi Zhu
Zongyin Yang
Christopher G. Jones
Tawfique Hasan
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-91572-2_6