Abstract
This chapter discusses an important topic in factory management, that of improving the understandability of AI applications for group multi-criteria decision making in manufacturing systems. Due to its long-term and cross-functional impact, decision making may be more critical to the competitiveness and sustainability of manufacturing systems than production planning and control. This chapter uses the example of choosing the right smart and automation technologies for factories during the COVID-19 pandemic. This topic is of particular importance as many factories are forced to close or operate on a smaller scale (using a smaller workforce), thus pursuing further automation. Artificial intelligence and Industry 4.0 technologies have many applications in this area, most of which can also be applied for other decision-making purposes in manufacturing systems. First, a systematic procedure was established to guide the group multi-criteria decision-making process. Applications of AI and XAI to identify targets are first reviewed. Subsequently, the application of AI and XAI to selection factors and development of criteria is presented. Artificial intelligence techniques are widely used to derive criteria priorities. Therefore, it is particularly important to explain XAI techniques and tools for such AI applications. Aggregating the judgments of multiple decision makers is the next focus, followed by the introduction of AI and XAI applications to evaluate the overall performance of each alternative. Taking fuzzy ranking preference based on similarity to ideal solution (FTOPSIS) as an example, the application of XAI techniques and tools in explaining comparison results using FTOPSIS is illustrated. Another AI technology used for the same purpose is fuzzy VIKOR. XAI techniques and tools for interpreting fuzzy VIKOR are also presented. Finally, several metrics are proposed to evaluate the effectiveness of XAI techniques or tools for decision making in the manufacturing domain.