Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2023 | OriginalPaper | Chapter

4. Applications of XAI to Job Sequencing and Scheduling in Manufacturing

Abstract

This chapter discusses a new application field of XAI in manufacturing—job sequencing and scheduling. It first breaks down job sequencing and scheduling into several steps and then mentions AI technologies applicable to some of these steps. It is worth noting that many AI applications focus on the preparation of inputs required for scheduling tasks, rather than the process of scheduling tasks, which is a distinctive feature of the field. Nonetheless, many AI techniques have already been explained in other fields or domains. These explanations can provide a reference for explaining the application of AI in job sequencing and scheduling. Therefore, some general XAI techniques and tools for job sequencing and scheduling are reviewed, including: referring to the classification of job scheduling problems; customizing scheduling rules; text description, pseudocode; decision trees, flowcharts. Furthermore, job sequencing and scheduling problems are often formulated as mathematical programming (optimization) models to be optimized. AI technologies can be applied to find the best solution for the model. Applications of genetic algorithm (GA) are of particular interest because such applications are most common in job scheduling. Furthermore, XAI techniques and tools for explaining GA can be easily extended to other evolutionary AI applications, such as artificial bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization (PSO) in job scheduling. Applicable XAI techniques and tools include flowcharts, text description, chromosome maps, dynamic line charts, and bar charts with baseline. Some novel XAI techniques and tools for interpreting GAs are also introduced: decision tree-based interpretation and dynamic transition and contribution diagrams.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference H. Wang, Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions. Expert. Syst. 22(2), 78–85 (2005) CrossRef H. Wang, Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions. Expert. Syst. 22(2), 78–85 (2005) CrossRef
2.
go back to reference A. Seker, S. Erol, R. Botsali, A neuro-fuzzy model for a new hybrid integrated process planning and scheduling system. Expert Syst. Appl. 40(13), 5341–5351 (2013) CrossRef A. Seker, S. Erol, R. Botsali, A neuro-fuzzy model for a new hybrid integrated process planning and scheduling system. Expert Syst. Appl. 40(13), 5341–5351 (2013) CrossRef
3.
go back to reference T. Chen, Y.C. Wang, A fuzzy-neural approach for supporting three-objective job scheduling in a wafer fabrication factory. Neural Comput. Appl. 23(1), 353–367 (2013) CrossRef T. Chen, Y.C. Wang, A fuzzy-neural approach for supporting three-objective job scheduling in a wafer fabrication factory. Neural Comput. Appl. 23(1), 353–367 (2013) CrossRef
4.
go back to reference G. El Khayat, A. Langevin, D. Riopel, Integrated production and material handling scheduling using mathematical programming and constraint programming. Eur. J. Oper. Res. 175(3), 1818–1832 (2006) MATHCrossRef G. El Khayat, A. Langevin, D. Riopel, Integrated production and material handling scheduling using mathematical programming and constraint programming. Eur. J. Oper. Res. 175(3), 1818–1832 (2006) MATHCrossRef
5.
go back to reference E.G. Talbi, Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 240(1), 171–215 (2016) MathSciNetMATHCrossRef E.G. Talbi, Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 240(1), 171–215 (2016) MathSciNetMATHCrossRef
6.
go back to reference T.C.T. Chen, Job sequencing and scheduling, in Production Planning and Control in Semiconductor Manufacturing: Big Data Analytics and Industry 4.0 Applications (2020), pp. 77–99 T.C.T. Chen, Job sequencing and scheduling, in Production Planning and Control in Semiconductor Manufacturing: Big Data Analytics and Industry 4.0 Applications (2020), pp. 77–99
7.
go back to reference Z.W. Geem, Optimal scheduling of multiple dam system using harmony search algorithm, in International Work-Conference on Artificial Neural Networks (2007), pp. 316–323 Z.W. Geem, Optimal scheduling of multiple dam system using harmony search algorithm, in International Work-Conference on Artificial Neural Networks (2007), pp. 316–323
8.
go back to reference X. Yuan, L. Wang, Y. Yuan, Application of enhanced PSO approach to optimal scheduling of hydro system. Energy Convers. Manage. 49(11), 2966–2972 (2008) CrossRef X. Yuan, L. Wang, Y. Yuan, Application of enhanced PSO approach to optimal scheduling of hydro system. Energy Convers. Manage. 49(11), 2966–2972 (2008) CrossRef
9.
go back to reference D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, XAI—explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019) D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.Z. Yang, XAI—explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)
10.
11.
go back to reference S. Meister, M. Wermes, J. Stüve, R.M. Groves, Investigations on explainable artificial Intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Compos. B Eng. 224, 109160 (2021) CrossRef S. Meister, M. Wermes, J. Stüve, R.M. Groves, Investigations on explainable artificial Intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Compos. B Eng. 224, 109160 (2021) CrossRef
12.
go back to reference C. Ieracitano, N. Mammone, A. Paviglianiti, F.C. Morabito, Toward an augmented and explainable machine learning approach for classification of defective nanomaterial patches, in International Conference on Engineering Applications of Neural Networks (2021), pp. 244–255 C. Ieracitano, N. Mammone, A. Paviglianiti, F.C. Morabito, Toward an augmented and explainable machine learning approach for classification of defective nanomaterial patches, in International Conference on Engineering Applications of Neural Networks (2021), pp. 244–255
13.
go back to reference L.C. Brito, G.A. Susto, J.N. Brito, M.A. Duarte, An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mech. Syst. Signal Process. 163, 108105 (2022) CrossRef L.C. Brito, G.A. Susto, J.N. Brito, M.A. Duarte, An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mech. Syst. Signal Process. 163, 108105 (2022) CrossRef
14.
go back to reference H. Nasiri, A. Homafar, S.C. Chelgani, Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence. Results Geophys. Sci. 8, 100034 (2021) H. Nasiri, A. Homafar, S.C. Chelgani, Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence. Results Geophys. Sci. 8, 100034 (2021)
15.
go back to reference T. Chen, Y.C. Wang, A two-stage explainable artificial intelligence approach for classification-based job cycle time prediction. Int. J. Adv. Manuf. Technol. 123(5), 2031–2042 (2022) CrossRef T. Chen, Y.C. Wang, A two-stage explainable artificial intelligence approach for classification-based job cycle time prediction. Int. J. Adv. Manuf. Technol. 123(5), 2031–2042 (2022) CrossRef
16.
go back to reference S. L’Yi, B. Ko, D. Shin, Y.J. Cho, J. Lee, B. Kim, J. Seo, XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data. BMC Bioinf. 16(11), 1–15 (2015) S. L’Yi, B. Ko, D. Shin, Y.J. Cho, J. Lee, B. Kim, J. Seo, XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data. BMC Bioinf. 16(11), 1–15 (2015)
17.
go back to reference J. Zhang, H. Wang, H. Zhu, Increase the classification and expression ability and visualize the decision through a novel deep neural network model for the diagnosis of glaucoma. Invest. Ophthalmol. Vis. Sci. 59(9), 4079–4079 (2018) J. Zhang, H. Wang, H. Zhu, Increase the classification and expression ability and visualize the decision through a novel deep neural network model for the diagnosis of glaucoma. Invest. Ophthalmol. Vis. Sci. 59(9), 4079–4079 (2018)
18.
go back to reference Y.C. Lin, T.C.T. Chen, Type-II fuzzy approach with explainable artificial intelligence for nature-based leisure travel destination selection amid the COVID-19 pandemic. Digital Health 8, 20552076221106320 (2022) CrossRef Y.C. Lin, T.C.T. Chen, Type-II fuzzy approach with explainable artificial intelligence for nature-based leisure travel destination selection amid the COVID-19 pandemic. Digital Health 8, 20552076221106320 (2022) CrossRef
19.
go back to reference T. Chen, M.-C. Chiu, Evaluating the sustainability of a smart technology application in healthcare after the COVID-19 pandemic: a hybridizing subjective and objective fuzzy group decision-making approach with XAI. Digital Health 8, 20552076221136380 (2022) CrossRef T. Chen, M.-C. Chiu, Evaluating the sustainability of a smart technology application in healthcare after the COVID-19 pandemic: a hybridizing subjective and objective fuzzy group decision-making approach with XAI. Digital Health 8, 20552076221136380 (2022) CrossRef
20.
go back to reference H. Na, J. Park, Multi-level job scheduling in a flexible job shop environment. Int. J. Prod. Res. 52(13), 3877–3887 (2014) CrossRef H. Na, J. Park, Multi-level job scheduling in a flexible job shop environment. Int. J. Prod. Res. 52(13), 3877–3887 (2014) CrossRef
21.
go back to reference L.P. Michael, Scheduling: Theory, Algorithms, and Systems (Springer, 2018) L.P. Michael, Scheduling: Theory, Algorithms, and Systems (Springer, 2018)
22.
go back to reference R.K. Suresh, K.M. Mohanasundaram, Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int. J. Adv. Manuf. Technol. 29(1), 184–196 (2006) CrossRef R.K. Suresh, K.M. Mohanasundaram, Pareto archived simulated annealing for job shop scheduling with multiple objectives. Int. J. Adv. Manuf. Technol. 29(1), 184–196 (2006) CrossRef
23.
go back to reference T. Chen, Job remaining cycle time estimation with a post-classifying fuzzy-neural approach in a wafer fabrication plant: a simulation study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223(8), 1021–1031 (2009) CrossRef T. Chen, Job remaining cycle time estimation with a post-classifying fuzzy-neural approach in a wafer fabrication plant: a simulation study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223(8), 1021–1031 (2009) CrossRef
24.
go back to reference S.S. Sana, H. Ospina-Mateus, F.G. Arrieta, J.A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient. Intell. Humaniz. Comput. 10(5), 2063–2090 (2019) CrossRef S.S. Sana, H. Ospina-Mateus, F.G. Arrieta, J.A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient. Intell. Humaniz. Comput. 10(5), 2063–2090 (2019) CrossRef
25.
go back to reference R.G. Babukartik, P. Dhavachelvan, Hybrid algorithm using the advantage of ACO and Cuckoo Search for job scheduling. Int. J. Inf. Technol. Convergence Serv. 2(4), 25 (2012) R.G. Babukartik, P. Dhavachelvan, Hybrid algorithm using the advantage of ACO and Cuckoo Search for job scheduling. Int. J. Inf. Technol. Convergence Serv. 2(4), 25 (2012)
26.
go back to reference J.J. Liu, J.C. Liu, Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids 2022, 2263329 (2022) J.J. Liu, J.C. Liu, Permeability predictions for tight sandstone reservoir using explainable machine learning and particle swarm optimization. Geofluids 2022, 2263329 (2022)
27.
go back to reference D. Thiruvady, A.T. Ernst, G. Singh, Parallel ant colony optimization for resource constrained job scheduling. Ann. Oper. Res. 242(2), 355–372 (2016) MathSciNetMATHCrossRef D. Thiruvady, A.T. Ernst, G. Singh, Parallel ant colony optimization for resource constrained job scheduling. Ann. Oper. Res. 242(2), 355–372 (2016) MathSciNetMATHCrossRef
28.
go back to reference M. Aghamohammadi, M. Madan, J.K. Hong, I. Watson, Predicting heart attack through explainable artificial intelligence, in International Conference on Computational Science (2019), pp. 633–645 M. Aghamohammadi, M. Madan, J.K. Hong, I. Watson, Predicting heart attack through explainable artificial intelligence, in International Conference on Computational Science (2019), pp. 633–645
29.
go back to reference B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Prediction of creep life using an explainable artificial intelligence technique and alloy design based on the genetic algorithm in creep-strength-enhanced ferritic 9% Cr steel. Metals Mater. Int. 1–12 (2022) B.O. Kong, M.S. Kim, B.H. Kim, J.H. Lee, Prediction of creep life using an explainable artificial intelligence technique and alloy design based on the genetic algorithm in creep-strength-enhanced ferritic 9% Cr steel. Metals Mater. Int. 1–12 (2022)
30.
go back to reference G. Akhlaghi, K. YAslansefat, X. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, X. Ma, Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050. Appl. Energy 281, 116062 (2021) G. Akhlaghi, K. YAslansefat, X. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, X. Ma, Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050. Appl. Energy 281, 116062 (2021)
31.
go back to reference C. Panigutti, A. Perotti, D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020), pp. 629–639 C. Panigutti, A. Perotti, D. Pedreschi, Doctor XAI: an ontology-based approach to black-box sequential data classification explanations, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (2020), pp. 629–639
32.
go back to reference H. Zhang, Z. Jiang, C. Guo, Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 41(1–2), 110–121 (2009) CrossRef H. Zhang, Z. Jiang, C. Guo, Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology. Int. J. Adv. Manuf. Technol. 41(1–2), 110–121 (2009) CrossRef
33.
go back to reference T. Chen, A fuzzy-neural DBD approach for job scheduling in a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 8(6), 4024–4044 (2012) T. Chen, A fuzzy-neural DBD approach for job scheduling in a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 8(6), 4024–4044 (2012)
34.
go back to reference T. Chen, T. Wang, Enhancing scheduling performance for a wafer fabrication factory: the bi-objective slack-diversifying nonlinear fluctuation-smoothing rule. Comput. Intell. Neurosci. 13, 13 (2012) T. Chen, T. Wang, Enhancing scheduling performance for a wafer fabrication factory: the bi-objective slack-diversifying nonlinear fluctuation-smoothing rule. Comput. Intell. Neurosci. 13, 13 (2012)
35.
go back to reference T. Chen, An optimized tailored nonlinear fluctuation smoothing rule for scheduling a semiconductor manufacturing factory. Comput. Ind. Eng. 58, 317–325 (2010) CrossRef T. Chen, An optimized tailored nonlinear fluctuation smoothing rule for scheduling a semiconductor manufacturing factory. Comput. Ind. Eng. 58, 317–325 (2010) CrossRef
36.
go back to reference T. Chen, Y.-C. Wang, Y.-C. Lin, A bi-criteria four-factor fluctuation smoothing rule for scheduling jobs in a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 6(10), 4289–4303 (2010) T. Chen, Y.-C. Wang, Y.-C. Lin, A bi-criteria four-factor fluctuation smoothing rule for scheduling jobs in a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 6(10), 4289–4303 (2010)
37.
go back to reference H.-C. Wu, T. Chen, A fuzzy-neural ensemble and geometric rule fusion approach for scheduling a wafer fabrication factory. Math. Probl. Eng. 2013, 956978 (2013) H.-C. Wu, T. Chen, A fuzzy-neural ensemble and geometric rule fusion approach for scheduling a wafer fabrication factory. Math. Probl. Eng. 2013, 956978 (2013)
38.
go back to reference T. Chen, Y.-C. Wang, A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM-FBPN remaining cycle time estimator for scheduling a wafer fab—a simulation study. Int. J. Adv. Manuf. Technol. 49(5), 709–721 (2010) CrossRef T. Chen, Y.-C. Wang, A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM-FBPN remaining cycle time estimator for scheduling a wafer fab—a simulation study. Int. J. Adv. Manuf. Technol. 49(5), 709–721 (2010) CrossRef
39.
go back to reference T. Chen, Y.-C. Wang, Y.-C. Lin, A fuzzy-neural system for scheduling a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 6(2), 687–700 (2010) T. Chen, Y.-C. Wang, Y.-C. Lin, A fuzzy-neural system for scheduling a wafer fabrication factory. Int. J. Innov. Comput. Inf. Control 6(2), 687–700 (2010)
40.
go back to reference T. Chen, A tailored nonlinear fluctuation smoothing rule for semiconductor manufacturing factory scheduling. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 149–160 (2009) T. Chen, A tailored nonlinear fluctuation smoothing rule for semiconductor manufacturing factory scheduling. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 149–160 (2009)
41.
go back to reference T. Chen, Dynamic fuzzy-neural fluctuation smoothing rule for jobs scheduling in a wafer fabrication factory. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 1081–1094 (2009) T. Chen, Dynamic fuzzy-neural fluctuation smoothing rule for jobs scheduling in a wafer fabrication factory. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 1081–1094 (2009)
42.
go back to reference T. Chen, C.-W. Lin, Smart and automation technologies for ensuring the long-term operation of a factory amid the COVID-19 pandemic: an evolving fuzzy assessment approach. Int. J. Adv. Manuf. Technol. 111, 3545–3558 (2020) CrossRef T. Chen, C.-W. Lin, Smart and automation technologies for ensuring the long-term operation of a factory amid the COVID-19 pandemic: an evolving fuzzy assessment approach. Int. J. Adv. Manuf. Technol. 111, 3545–3558 (2020) CrossRef
43.
44.
go back to reference Y.-C. Wang, T.-C.T. Chen, M.-C. Chiu, An explainable deep-learning approach for job cycle time prediction. Decis. Anal. 6, 100153 (2023) Y.-C. Wang, T.-C.T. Chen, M.-C. Chiu, An explainable deep-learning approach for job cycle time prediction. Decis. Anal. 6, 100153 (2023)
45.
go back to reference B. Skinner, S. Yuan, S. Huang, D. Liu, B. Cai, G. Dissanayake, H. Lau, A. Bott, D. Pagac, Optimisation for job scheduling at automated container terminals using genetic algorithm. Comput. Ind. Eng. 64(1), 511–523 (2013) CrossRef B. Skinner, S. Yuan, S. Huang, D. Liu, B. Cai, G. Dissanayake, H. Lau, A. Bott, D. Pagac, Optimisation for job scheduling at automated container terminals using genetic algorithm. Comput. Ind. Eng. 64(1), 511–523 (2013) CrossRef
46.
go back to reference C. Shen, L. Wang, Q. Li, Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol. 183(2–3), 412–418 (2007) CrossRef C. Shen, L. Wang, Q. Li, Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J. Mater. Process. Technol. 183(2–3), 412–418 (2007) CrossRef
47.
go back to reference J. Xia, Y. Yan, L. Ji, Research on control strategy and policy optimal scheduling based on an improved genetic algorithm. Neural Comput. Appl. 34(12), 9485–9497 (2022) CrossRef J. Xia, Y. Yan, L. Ji, Research on control strategy and policy optimal scheduling based on an improved genetic algorithm. Neural Comput. Appl. 34(12), 9485–9497 (2022) CrossRef
48.
go back to reference T. Chen, A self-adaptive agent-based fuzzy-neural scheduling system for a wafer fabrication factory. Expert Syst. Appl. 38(6), 7158–7168 (2011) CrossRef T. Chen, A self-adaptive agent-based fuzzy-neural scheduling system for a wafer fabrication factory. Expert Syst. Appl. 38(6), 7158–7168 (2011) CrossRef
49.
go back to reference C.R. Reeves, A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22(1), 5–13 (1995) MATHCrossRef C.R. Reeves, A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22(1), 5–13 (1995) MATHCrossRef
50.
go back to reference F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008) MATHCrossRef F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008) MATHCrossRef
51.
go back to reference Y. Demir, S.K. İşleyen, Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013) MathSciNetMATHCrossRef Y. Demir, S.K. İşleyen, Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013) MathSciNetMATHCrossRef
52.
go back to reference T. Chen, An effective dispatching rule for bi-objective job scheduling in a wafer fabrication factory—considering the average cycle time and the maximum lateness. Int. J. Adv. Manuf. Technol. 67(5–8), 1281–1295 (2013) CrossRef T. Chen, An effective dispatching rule for bi-objective job scheduling in a wafer fabrication factory—considering the average cycle time and the maximum lateness. Int. J. Adv. Manuf. Technol. 67(5–8), 1281–1295 (2013) CrossRef
53.
go back to reference T. Chen, Intelligent scheduling approaches for a wafer fabrication factory. J. Intell. Manuf. 23(3), 897–911 (2012) CrossRef T. Chen, Intelligent scheduling approaches for a wafer fabrication factory. J. Intell. Manuf. 23(3), 897–911 (2012) CrossRef
54.
go back to reference E.M. Kenny, M.T. Keane, Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI, in Twenty-Eighth International Joint Conferences on Artificial Intelligence (2019), pp. 2708–2715 E.M. Kenny, M.T. Keane, Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI, in Twenty-Eighth International Joint Conferences on Artificial Intelligence (2019), pp. 2708–2715
55.
go back to reference M.T. Ribeiro, S. Singh, C. Guestrin, “Why should i trust you?” Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144 M.T. Ribeiro, S. Singh, C. Guestrin, “Why should i trust you?” Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144
56.
go back to reference O. Abedinia, N. Amjady, H. Zareipour, A new feature selection technique for load and price forecast of electrical power systems. IEEE Trans. Power Syst. 32(1), 62–74 (2016) CrossRef O. Abedinia, N. Amjady, H. Zareipour, A new feature selection technique for load and price forecast of electrical power systems. IEEE Trans. Power Syst. 32(1), 62–74 (2016) CrossRef
57.
Metadata
Title
Applications of XAI to Job Sequencing and Scheduling in Manufacturing
Author
Tin-Chih Toly Chen
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-27961-4_4

Premium Partners