Skip to main content
Top

2022 | OriginalPaper | Chapter

14. Applications to Device Physics—Photon Band Gap of Holographic Photonic Quasicrystals

Authors : Tian-You Fan, Wenge Yang, Hui Cheng, Xiao-Hong Sun

Published in: Generalized Dynamics of Soft-Matter Quasicrystals

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The most attractive aspect of the application of soft-matter quasicrystals may be in photon band gap. The soft-matter quasicrystals observed so far are two-dimensional structures with quasiperiodic symmetry, and higher fold of orientational symmetry being greater than that of solid one appeared, there is superiority than solid quasicrystals in this respect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rechtsman, M.C., Jeong, H.C., Chaikin, P.M., Torquato, S., Steinhardt, P.J.: Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008)ADSCrossRef Rechtsman, M.C., Jeong, H.C., Chaikin, P.M., Torquato, S., Steinhardt, P.J.: Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008)ADSCrossRef
2.
go back to reference Romero-Vivas, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)ADSCrossRef Romero-Vivas, J., Chigrin, D.N., Lavrinenko, A.V., Torres, C.S.: Resonant add-drop filter based on a photonic quasicrystal. Opt. Express 13, 826–835 (2005)ADSCrossRef
3.
go back to reference Hase, M., Miyazaki, H., Egashira, M., Shinya, N., Kojima, K.M., Uchida, S.I.: Isotropic photonic band-gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B 66, 214205 (2002)ADSCrossRef Hase, M., Miyazaki, H., Egashira, M., Shinya, N., Kojima, K.M., Uchida, S.I.: Isotropic photonic band-gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals. Phys. Rev. B 66, 214205 (2002)ADSCrossRef
4.
go back to reference Jin, C., Cheng, B., Man, B., Li, Z., Zhang, Z., Ban, S., Sun, B.: Band-gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999)ADSCrossRef Jin, C., Cheng, B., Man, B., Li, Z., Zhang, Z., Ban, S., Sun, B.: Band-gap and wave guiding effect in a quasiperiodic photonic crystal. Appl. Phys. Lett. 75, 1848–1850 (1999)ADSCrossRef
5.
go back to reference Yin, J., Huang, X., Liu, S., Hu, S.: Photonic band-gap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun. 269, 385–388 (2007)ADSCrossRef Yin, J., Huang, X., Liu, S., Hu, S.: Photonic band-gap properties of 8-fold symmetric photonic quasicrystals. Opt. Commun. 269, 385–388 (2007)ADSCrossRef
6.
go back to reference Mnaymneh, K., Gauthier, R.C.: Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express 14, 5089–5099 (2007)ADSCrossRef Mnaymneh, K., Gauthier, R.C.: Mode localization and band-gap formation in defect-free photonic quasicrystals. Opt. Express 14, 5089–5099 (2007)ADSCrossRef
7.
go back to reference Rose, P., Zito, G., Di Gennaro, E., Abbate, G., Andreone, A.: Control of the light transmission through a quasiperiodic waveguide. Opt. Express 20, 26056–26061 (2012)ADSCrossRef Rose, P., Zito, G., Di Gennaro, E., Abbate, G., Andreone, A.: Control of the light transmission through a quasiperiodic waveguide. Opt. Express 20, 26056–26061 (2012)ADSCrossRef
8.
go back to reference Wang, S., Sun, X., Wang, C., Peng, G., Qi, Y., Wang, X.: Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal. J. Phys. D Appl. Phys. 50, 365102 (2017)CrossRef Wang, S., Sun, X., Wang, C., Peng, G., Qi, Y., Wang, X.: Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal. J. Phys. D Appl. Phys. 50, 365102 (2017)CrossRef
9.
go back to reference Ren, J., Sun, X., Wang, S.: A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal. Opt. Laser Technol. 101, 42–48 (2018)ADSCrossRef Ren, J., Sun, X., Wang, S.: A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal. Opt. Laser Technol. 101, 42–48 (2018)ADSCrossRef
10.
go back to reference Ren, J., Sun, X., Wang, S.: A narrowband filter based on 2D 8-fold photonic quasicrystal. Superlattices Microstruct. 116, 221–226 (2018)ADSCrossRef Ren, J., Sun, X., Wang, S.: A narrowband filter based on 2D 8-fold photonic quasicrystal. Superlattices Microstruct. 116, 221–226 (2018)ADSCrossRef
11.
go back to reference Florescu, M., Torquato, S., Steinhardt, P.J.: Complete band-gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 80, 145112 (2009)CrossRef Florescu, M., Torquato, S., Steinhardt, P.J.: Complete band-gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 80, 145112 (2009)CrossRef
12.
go back to reference Sun, X., Wang, S., Liu, W., Jiang, L.: A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures. Opt. Commun. 369, 138–144 (2016)ADSCrossRef Sun, X., Wang, S., Liu, W., Jiang, L.: A simple configuration for fabrication of 2D and 3D photonic quasicrystals with complex structures. Opt. Commun. 369, 138–144 (2016)ADSCrossRef
13.
go back to reference Sun, X., Liu, W., Wang, G., Tao, X.: Optics design of a top-cut prism interferometer for holographic photonic quasicrystals. Opt. Commun. 285, 4593–4598 (2012)ADSCrossRef Sun, X., Liu, W., Wang, G., Tao, X.: Optics design of a top-cut prism interferometer for holographic photonic quasicrystals. Opt. Commun. 285, 4593–4598 (2012)ADSCrossRef
14.
go back to reference Xi, X.Y., Sun, X.H.: Photonic band-gap properties of two-dimensional photonic quasicrystals with multiple complex structures. Superlattices Microstruct. 129, 247–251 (2019)ADSCrossRef Xi, X.Y., Sun, X.H.: Photonic band-gap properties of two-dimensional photonic quasicrystals with multiple complex structures. Superlattices Microstruct. 129, 247–251 (2019)ADSCrossRef
15.
go back to reference Sellers, S., Man, W., Sahba, S., Florescu, M.: Local self-uniformity in photonic networks. Nat. Commun. 8, 14439 (2017)ADSCrossRef Sellers, S., Man, W., Sahba, S., Florescu, M.: Local self-uniformity in photonic networks. Nat. Commun. 8, 14439 (2017)ADSCrossRef
16.
go back to reference Wang, S., Sun, X.H., Li, W.Y., Liu, W., Jiang, L., Han, J.: Fabrication of photonic quasicrystalline structures in the sub-micrometer scale. Superlattices Microstruct. 93, 122–127 (2016)ADSCrossRef Wang, S., Sun, X.H., Li, W.Y., Liu, W., Jiang, L., Han, J.: Fabrication of photonic quasicrystalline structures in the sub-micrometer scale. Superlattices Microstruct. 93, 122–127 (2016)ADSCrossRef
17.
go back to reference Dunmur, D., Toriyama, K.: In: Demus, D., et al. (ed.) Physical Properties of Liquid Crystals. Wiley-VCH, Weinheim, pp. 124–128 (1999) Dunmur, D., Toriyama, K.: In: Demus, D., et al. (ed.) Physical Properties of Liquid Crystals. Wiley-VCH, Weinheim, pp. 124–128 (1999)
18.
go back to reference Mitova, M., Nouvet, E., Dessaud, N.: Polymer-stabilized cholesteric liquid crystals as switchable photonic broad band-gaps. Eur. Phys. J. E 14, 413–419 (2004)CrossRef Mitova, M., Nouvet, E., Dessaud, N.: Polymer-stabilized cholesteric liquid crystals as switchable photonic broad band-gaps. Eur. Phys. J. E 14, 413–419 (2004)CrossRef
19.
go back to reference Hrozhyk, U.A., Serak, S.V., Tabiryan, N.V., White, T.J., Bunning, T.J.: Nonlinear optical properties of fast, photo-switchable cholesteric liquid crystal band-gaps. Opt. Mater. Express 1, 943–952 (2011)ADSCrossRef Hrozhyk, U.A., Serak, S.V., Tabiryan, N.V., White, T.J., Bunning, T.J.: Nonlinear optical properties of fast, photo-switchable cholesteric liquid crystal band-gaps. Opt. Mater. Express 1, 943–952 (2011)ADSCrossRef
20.
go back to reference Hwang, J., Ha, N.Y., Chang, H.J., Park, B., Wu, J.W.: Enhanced optical nonlinearity near the photonic band-gap edges of a cholesteric liquid crystal. Opt. Lett. 29, 2644–2646 (2004)ADSCrossRef Hwang, J., Ha, N.Y., Chang, H.J., Park, B., Wu, J.W.: Enhanced optical nonlinearity near the photonic band-gap edges of a cholesteric liquid crystal. Opt. Lett. 29, 2644–2646 (2004)ADSCrossRef
21.
go back to reference Costello, M.J., Meiboom, S., Sammon, M.: Electron microscopy of a cholesteric liquid crystal and its blue phase. Phys. Rev. A 29, 2957–2959 (1984)ADSCrossRef Costello, M.J., Meiboom, S., Sammon, M.: Electron microscopy of a cholesteric liquid crystal and its blue phase. Phys. Rev. A 29, 2957–2959 (1984)ADSCrossRef
Metadata
Title
Applications to Device Physics—Photon Band Gap of Holographic Photonic Quasicrystals
Authors
Tian-You Fan
Wenge Yang
Hui Cheng
Xiao-Hong Sun
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-6628-5_14

Premium Partners