Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

10. Applied Profiling: Uses, Reliability and Ethics

Author: Rita Singh

Published in: Profiling Humans from their Voice

Publisher: Springer Singapore

share
SHARE

Abstract

There are many uses of profiling. Currently, as represented by this book, the science of profiling is in its nascent stages. As it becomes more accurate, more uses for it will emerge. However, there is a dichotomy associated with this progression. While its increasing accuracy is likely to give rise to more applications, its potential to severely infringe on a person’s privacy through them will also rise. In the context of practical applications, two issues therefore become extremely important: whether the information generated through profiling is accurate or not, and whether it is relevant and ethical or not.
Footnotes
1
For instance, a sample of 100 people may have 20, 30 and 50 instances of short, medium height and tall people respectively.
 
2
If Eq. 10.50 \(\mu \), the true mean of P(Y), instead of \(\bar{Y}\), there would be N degrees of freedom and the denominator would be N.
 
Literature
1.
go back to reference Singh, R., Jimenéz, A., & Öland, A. (2017). Voice disguise by mimicry: Deriving statistical articulometric evidence to evaluate claimed impersonation. IET Biometrics, 6(4), 282–289. Singh, R., Jimenéz, A., & Öland, A. (2017). Voice disguise by mimicry: Deriving statistical articulometric evidence to evaluate claimed impersonation. IET Biometrics, 6(4), 282–289.
2.
go back to reference Menn, L. (1983). Development of articulatory, phonetic, and phonological capabilities. Language Production, 2, 3–50. Menn, L. (1983). Development of articulatory, phonetic, and phonological capabilities. Language Production, 2, 3–50.
3.
go back to reference Giannelli, P. C. (1993). Daubert: Interpreting the federal rules of evidence. Cardozo Law Review, 15, 1999. Giannelli, P. C. (1993). Daubert: Interpreting the federal rules of evidence. Cardozo Law Review, 15, 1999.
4.
go back to reference Lally, S. J. (2003). What tests are acceptable for use in forensic evaluations? A survey of experts. Professional Psychology: Research and Practice, 34(5), 491. CrossRef Lally, S. J. (2003). What tests are acceptable for use in forensic evaluations? A survey of experts. Professional Psychology: Research and Practice, 34(5), 491. CrossRef
5.
go back to reference Hamilton, H. G. (1997). The movement from Frye to Daubert: Where do the states stand. Jurimetrics, 38, 201. Hamilton, H. G. (1997). The movement from Frye to Daubert: Where do the states stand. Jurimetrics, 38, 201.
6.
go back to reference Cisse, M. M., Adi, Y., Neverova, N., & Keshet, J. (2017). Houdini: Fooling deep structured visual and speech recognition models with adversarial examples. In Proceedings of the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS) (pp. 6977–6987). Long Beach, California. Cisse, M. M., Adi, Y., Neverova, N., & Keshet, J. (2017). Houdini: Fooling deep structured visual and speech recognition models with adversarial examples. In Proceedings of the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS) (pp. 6977–6987). Long Beach, California.
7.
go back to reference Kreuk, F., Adi, Y., Cisse, M., & Keshet, J. (2018). Fooling end-to-end speaker verification with adversarial examples. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1962–1966). Calgary, Canada: IEEE. Kreuk, F., Adi, Y., Cisse, M., & Keshet, J. (2018). Fooling end-to-end speaker verification with adversarial examples. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1962–1966). Calgary, Canada: IEEE.
8.
go back to reference Brendel, W., Rauber, J., & Bethge, M. (2017). Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv:​1712.​04248. Brendel, W., Rauber, J., & Bethge, M. (2017). Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv:​1712.​04248.
9.
go back to reference Xia, L. (2018). China focus: Technologies at summer Davos offer a glimpse into future, News Article, XinhuaNet, China, 20 Sept 2018. Xia, L. (2018). China focus: Technologies at summer Davos offer a glimpse into future, News Article, XinhuaNet, China, 20 Sept 2018.
10.
go back to reference Wonnacott, T. H., & Wonnacott, R. J. (1990). Introductory statistics (Vol. 5). New York: Wiley. Wonnacott, T. H., & Wonnacott, R. J. (1990). Introductory statistics (Vol. 5). New York: Wiley.
11.
go back to reference Spiegel, M. R., Schiller, J. J., & Srinivasan, R. (2013). Probability and statistics. New York: McGraw-Hill. Spiegel, M. R., Schiller, J. J., & Srinivasan, R. (2013). Probability and statistics. New York: McGraw-Hill.
12.
go back to reference Wasserman, L. (2013). All of statistics: A concise course in statistical inference. Berlin: Springer Science & Business Media. Wasserman, L. (2013). All of statistics: A concise course in statistical inference. Berlin: Springer Science & Business Media.
13.
go back to reference Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica: Journal of the Econometric Society, 57, 307–333. MathSciNetCrossRef Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica: Journal of the Econometric Society, 57, 307–333. MathSciNetCrossRef
14.
go back to reference Garside, G. R., & Mack, C. (1976). Actual type 1 error probabilities for various tests in the homogeneity case of the 2 \(\times \) 2 contingency table. The American Statistician, 30(1), 18–21. Garside, G. R., & Mack, C. (1976). Actual type 1 error probabilities for various tests in the homogeneity case of the 2 \(\times \) 2 contingency table. The American Statistician, 30(1), 18–21.
15.
go back to reference Chen, P. N. (1996). General formulas for the Neyman-Pearson type-II error exponent subject to fixed and exponential type-I error bounds. IEEE Transactions on Information Theory, 42(1), 316–323. MathSciNetCrossRef Chen, P. N. (1996). General formulas for the Neyman-Pearson type-II error exponent subject to fixed and exponential type-I error bounds. IEEE Transactions on Information Theory, 42(1), 316–323. MathSciNetCrossRef
16.
go back to reference Lehmann, E. L. (1993). The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association, 88(424), 1242–1249. MathSciNetCrossRef Lehmann, E. L. (1993). The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association, 88(424), 1242–1249. MathSciNetCrossRef
17.
go back to reference Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610. Self, S. G., & Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610.
19.
go back to reference Donner, A., & Eliasziw, M. (1987). Sample size requirements for reliability studies. Statistics in Medicine, 6(4), 441–448. Donner, A., & Eliasziw, M. (1987). Sample size requirements for reliability studies. Statistics in Medicine, 6(4), 441–448.
20.
go back to reference Olson, C. L. (1976). On choosing a test statistic in multivariate analysis of variance. Psychological Bulletin, 83(4), 579. CrossRef Olson, C. L. (1976). On choosing a test statistic in multivariate analysis of variance. Psychological Bulletin, 83(4), 579. CrossRef
21.
go back to reference Pearson, K. (1896). Mathematical contributions to the theory of evolution III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253–318. CrossRef Pearson, K. (1896). Mathematical contributions to the theory of evolution III. Regression, heredity, and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 187, 253–318. CrossRef
22.
go back to reference Kendall, M. G. (1955). Rank correlation methods. Oxford, England: Griffin Publishers. Kendall, M. G. (1955). Rank correlation methods. Oxford, England: Griffin Publishers.
23.
go back to reference Siegal, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill. Siegal, S. (1956). Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.
24.
go back to reference Siegel, S. C., & Castellan, N. J., Jr. (1988). Nonparametric statistics for the behavioural sciences. New York: McGraw-Hill. Siegel, S. C., & Castellan, N. J., Jr. (1988). Nonparametric statistics for the behavioural sciences. New York: McGraw-Hill.
25.
go back to reference Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (Vol. 55). USA: Courier Corporation. Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (Vol. 55). USA: Courier Corporation.
26.
go back to reference Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Chi-squared distributions including chi and Rayleigh. Continuous univariate distributions (2nd ed., Vol. 1, pp. 415–493). New York: Wiley. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Chi-squared distributions including chi and Rayleigh. Continuous univariate distributions (2nd ed., Vol. 1, pp. 415–493). New York: Wiley.
27.
go back to reference Mood, A. M., Graybill, F. A., & Boes, D. (1974). Introduction to the theory of statistics (3rd ed., pp. 241–246). USA: McGraw-Hill. Mood, A. M., Graybill, F. A., & Boes, D. (1974). Introduction to the theory of statistics (3rd ed., pp. 241–246). USA: McGraw-Hill.
28.
go back to reference Beyer, W. H. (2018). Handbook of mathematical science. USA: CRC Press. Beyer, W. H. (2018). Handbook of mathematical science. USA: CRC Press.
29.
go back to reference Kres, H. (2012). Statistical tables for multivariate analysis: A handbook with references to applications. Berlin: Springer Science & Business Media. Kres, H. (2012). Statistical tables for multivariate analysis: A handbook with references to applications. Berlin: Springer Science & Business Media.
30.
go back to reference Krishnamoorthy, K. (2006). Handbook of statistical distributions with applications. USA: Chapman and Hall/CRC Press. Krishnamoorthy, K. (2006). Handbook of statistical distributions with applications. USA: Chapman and Hall/CRC Press.
31.
go back to reference Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer Science & Business Media. Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer Science & Business Media.
32.
go back to reference Patnaik, P. B. (1949). The non-central \(\chi ^2\) and F-distribution and their applications. Biometrika, 36(1/2), 202–232. MathSciNetCrossRef Patnaik, P. B. (1949). The non-central \(\chi ^2\) and F-distribution and their applications. Biometrika, 36(1/2), 202–232. MathSciNetCrossRef
33.
go back to reference Rohlf, F. J., & Sokal, R. R. (1995). Statistical tables. USA: Macmillan. Rohlf, F. J., & Sokal, R. R. (1995). Statistical tables. USA: Macmillan.
34.
go back to reference O’brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin, 97(2), 316. O’brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin, 97(2), 316.
35.
go back to reference Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis (Vol. 498). Hoboken, New Jersey: Wiley. Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis (Vol. 498). Hoboken, New Jersey: Wiley.
36.
go back to reference Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. Berlin: Springer Science & Business Media. Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. Berlin: Springer Science & Business Media.
37.
go back to reference Vonesh, E., & Chinchilli, V. M. (1996). Linear and nonlinear models for the analysis of repeated measurements. Boca Raton, Florida: CRC Press. Vonesh, E., & Chinchilli, V. M. (1996). Linear and nonlinear models for the analysis of repeated measurements. Boca Raton, Florida: CRC Press.
38.
go back to reference Jones, B., & Kenward, M. G. (2014). Design and analysis of cross-over trials. Monographs on statistics and applied probability. USA: Chapman & Hall, CRC Press. Jones, B., & Kenward, M. G. (2014). Design and analysis of cross-over trials. Monographs on statistics and applied probability. USA: Chapman & Hall, CRC Press.
39.
go back to reference Tufekci, Z. (2015). Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency. Colorado Technology Law Journal, 13, 203. Tufekci, Z. (2015). Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency. Colorado Technology Law Journal, 13, 203.
41.
go back to reference Adi, Y., Baum, C., Cisse, M., Pinkas, B., & Keshet, J. (2018). Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings of the Twenty-Seventh Security Symposium (USENIX) (pp. 1615–1631). Baltimore, USA. Adi, Y., Baum, C., Cisse, M., Pinkas, B., & Keshet, J. (2018). Turning your weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings of the Twenty-Seventh Security Symposium (USENIX) (pp. 1615–1631). Baltimore, USA.
42.
go back to reference Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. The Cambridge handbook of artificial intelligence, 1, 316–334. Bostrom, N., & Yudkowsky, E. (2014). The ethics of artificial intelligence. The Cambridge handbook of artificial intelligence, 1, 316–334.
43.
go back to reference Rabin, M. (1993). Incorporating fairness into game theory and economics. The American Economic Review, 83, 1281–1302. Rabin, M. (1993). Incorporating fairness into game theory and economics. The American Economic Review, 83, 1281–1302.
44.
go back to reference Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. The Quarterly Journal of Economics, 114(3), 817–868. Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation. The Quarterly Journal of Economics, 114(3), 817–868.
45.
go back to reference Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework. Artificial Intelligence, 36(2), 177–221. MathSciNetCrossRef Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework. Artificial Intelligence, 36(2), 177–221. MathSciNetCrossRef
46.
go back to reference Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209–227. CrossRef Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209–227. CrossRef
47.
go back to reference Edelman, B. (2011). Bias in search results: Diagnosis and response. Indian Journal of Technology, 7, 16. Edelman, B. (2011). Bias in search results: Diagnosis and response. Indian Journal of Technology, 7, 16.
48.
go back to reference Tommasi, T., Patricia, N., Caputo, B., & Tuytelaars, T. (2017). A deeper look at dataset bias. Domain adaptation in computer vision applications (pp. 37–55). Cham: Springer. Tommasi, T., Patricia, N., Caputo, B., & Tuytelaars, T. (2017). A deeper look at dataset bias. Domain adaptation in computer vision applications (pp. 37–55). Cham: Springer.
49.
go back to reference Ananny, M. (2016). Toward an ethics of algorithms: Convening, observation, probability, and timeliness. Science, Technology, & Human Values, 41(1), 93–117. CrossRef Ananny, M. (2016). Toward an ethics of algorithms: Convening, observation, probability, and timeliness. Science, Technology, & Human Values, 41(1), 93–117. CrossRef
50.
go back to reference Kraemer, F., Van Overveld, K., & Peterson, M. (2011). Is there an ethics of algorithms? Ethics and Information Technology, 13(3), 251–260. Kraemer, F., Van Overveld, K., & Peterson, M. (2011). Is there an ethics of algorithms? Ethics and Information Technology, 13(3), 251–260.
51.
go back to reference Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., & Smola, A. J. (2007). Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems (pp. 601–608). Huang, J., Gretton, A., Borgwardt, K., Schölkopf, B., & Smola, A. J. (2007). Correcting sample selection bias by unlabeled data. In Advances in Neural Information Processing Systems (pp. 601–608).
52.
go back to reference Jiménez, A., & Raj, B. (2017). Privacy preserving distance computation using somewhat-trusted third parties. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6399–6403). New Orleans, Louisiana, USA: IEEE. Jiménez, A., & Raj, B. (2017). Privacy preserving distance computation using somewhat-trusted third parties. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6399–6403). New Orleans, Louisiana, USA: IEEE.
53.
go back to reference Pathak, M. A., Raj, B., Rane, S. D., & Smaragdis, P. (2013). Privacy-preserving speech processing: Cryptographic and string-matching frameworks show promise. IEEE Signal Processing Magazine, 30(2), 62–74. Pathak, M. A., Raj, B., Rane, S. D., & Smaragdis, P. (2013). Privacy-preserving speech processing: Cryptographic and string-matching frameworks show promise. IEEE Signal Processing Magazine, 30(2), 62–74.
54.
go back to reference Pathak, M. A., & Raj, B. (2011). Privacy preserving speaker verification using adapted GMMs. In Proceedings of the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy. Pathak, M. A., & Raj, B. (2011). Privacy preserving speaker verification using adapted GMMs. In Proceedings of the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy.
55.
go back to reference Buchanan, E. A. (1999). An overview of information ethics issues in a world-wide context. Ethics and Information Technology, 1(3), 193–201. CrossRef Buchanan, E. A. (1999). An overview of information ethics issues in a world-wide context. Ethics and Information Technology, 1(3), 193–201. CrossRef
56.
go back to reference Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. Management Information Systems (MIS) Quarterly, 36, 1165–1188. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. Management Information Systems (MIS) Quarterly, 36, 1165–1188.
57.
go back to reference Lipinski, T. A., & Britz, J. (2000). Rethinking the ownership of information in the 21st century: Ethical implications. Ethics and Information Technology, 2(1), 49–71. Lipinski, T. A., & Britz, J. (2000). Rethinking the ownership of information in the 21st century: Ethical implications. Ethics and Information Technology, 2(1), 49–71.
58.
go back to reference Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society of London, 45(273–279), 135–145. Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric data. Proceedings of the Royal Society of London, 45(273–279), 135–145.
Metadata
Title
Applied Profiling: Uses, Reliability and Ethics
Author
Rita Singh
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8403-5_10