Skip to main content
Top

2024 | OriginalPaper | Chapter

Approach to Equilibrium for the Kac Model

Authors : Federico Bonetto, Eric A. Carlen, Lukas Hauger, Michael Loss

Published in: From Particle Systems to Partial Differential Equations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This is a review on the Kac Master Equation. Various issues will be presented such as the resolution of Kac’s conjecture about the gap for the three dimensional hard sphere gas, entropic propagation of chaos and other topics such as systems coupled to reservoirs and thermostats. The discussion is informal with few proofs and those who are presented are only sketched.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that the collision mechanism (24) is linear, i.e it can be represented by a matrix
$$\begin{aligned} \begin{pmatrix} v_i^*(\sigma ) \\ v_j^*(\sigma ) \end{pmatrix} = M_{(i,j)}^\sigma \begin{pmatrix} v_i \\ v_j \end{pmatrix} \,, \quad M_{(i,j)}^\sigma :=\begin{pmatrix} I - \sigma \oplus \sigma & \sigma \oplus \sigma \\ \sigma \oplus \sigma & I - \sigma \oplus \sigma \end{pmatrix} \,. \end{aligned}$$
(30)
Extending \(M_{(i,j)}^\sigma \) such that it leaves all other particles invariant, we obtain a collision matrix \(\underline{M}_{(i,j)}^\sigma \) acting on \({\mathord {\mathbb R}}^{3M+3N}\) that satisfies \(F(u_1,\dots ,u_i^*(\sigma ),\dots ,u_j^*(\sigma ),\dots ,u_{M+N}) = F(\underline{M}_{(i,j)}^\sigma \boldsymbol{u})\).
 
Literature
1.
go back to reference Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203(2), 493–553 (2016)MathSciNetCrossRef Bodineau, T., Gallagher, I., Saint-Raymond, L.: The Brownian motion as the limit of a deterministic system of hard-spheres. Invent. Math. 203(2), 493–553 (2016)MathSciNetCrossRef
2.
go back to reference Boltzmann, L.: Lectures on gas theory. University of California Press, Berkeley-Los Angeles, California. Translated by Stephen G. Brush (1964) Boltzmann, L.: Lectures on gas theory. University of California Press, Berkeley-Los Angeles, California. Translated by Stephen G. Brush (1964)
3.
go back to reference Bonetto, F., Han, R., Loss, M.: Decay of information for the KAC evolution. Ann. Henri Poincaré 22(9), 2975–2993 (2021)MathSciNetCrossRef Bonetto, F., Han, R., Loss, M.: Decay of information for the KAC evolution. Ann. Henri Poincaré 22(9), 2975–2993 (2021)MathSciNetCrossRef
4.
go back to reference Bonetto, F., Loss, M., Tossounian, H., Vaidyanathan, R.: Uniform approximation of a Maxwellian thermostat by finite reservoirs. Commun. Math. Phys. 351(1), 311–339 (2017)MathSciNetCrossRef Bonetto, F., Loss, M., Tossounian, H., Vaidyanathan, R.: Uniform approximation of a Maxwellian thermostat by finite reservoirs. Commun. Math. Phys. 351(1), 311–339 (2017)MathSciNetCrossRef
5.
go back to reference Bonetto, F., Geisinger, A., Loss, M., Ried, T.: Entropy decay for the KAC evolution. Commun. Math. Phys. 363(3), 847–875 (2018)MathSciNetCrossRef Bonetto, F., Geisinger, A., Loss, M., Ried, T.: Entropy decay for the KAC evolution. Commun. Math. Phys. 363(3), 847–875 (2018)MathSciNetCrossRef
6.
go back to reference Bonetto, F., Loss, M., Vaidyanathan, R.: The KAC model coupled to a thermostat. J. Stat. Phys. 156(4), 647–667 (2014)MathSciNetCrossRef Bonetto, F., Loss, M., Vaidyanathan, R.: The KAC model coupled to a thermostat. J. Stat. Phys. 156(4), 647–667 (2014)MathSciNetCrossRef
7.
go back to reference Carlen, E., Carvalho, M.C., Loss, M.: Many-body aspects of approach to equilibrium. In Séminaire: Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIX, 12. École Polytech., Palaiseau (2001) Carlen, E., Carvalho, M.C., Loss, M.: Many-body aspects of approach to equilibrium. In Séminaire: Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIX, 12. École Polytech., Palaiseau (2001)
8.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for KAC’s master equation and related stochastic evolution. Acta Math. 191(1), 1–54 (2003)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for KAC’s master equation and related stochastic evolution. Acta Math. 191(1), 1–54 (2003)MathSciNetCrossRef
9.
go back to reference Carlen, E., Carvalho, M., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the KAC process with hard sphere collisions in three dimensions. Ann. Probab. 48(6), 2807–2844 (2020)MathSciNetCrossRef Carlen, E., Carvalho, M., Loss, M.: Spectral gaps for reversible Markov processes with chaotic invariant measures: the KAC process with hard sphere collisions in three dimensions. Ann. Probab. 48(6), 2807–2844 (2020)MathSciNetCrossRef
10.
11.
go back to reference Carlen, E.A., Carrillo, J.A., Carvalho, M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(5), 1675–1700 (2009) Carlen, E.A., Carrillo, J.A., Carvalho, M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(5), 1675–1700 (2009)
12.
go back to reference Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the KAC model. Kinet. Relat. Models 3(1), 85–122 (2010)MathSciNetCrossRef Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the KAC model. Kinet. Relat. Models 3(1), 85–122 (2010)MathSciNetCrossRef
13.
go back to reference Carlen, E.A., Carvalho, M.C., Loss, M.P.: Chaos, ergodicity, and equilibria in a quantum KAC model. Adv. Math. 358, 106827, 50, (2019) Carlen, E.A., Carvalho, M.C., Loss, M.P.: Chaos, ergodicity, and equilibria in a quantum KAC model. Adv. Math. 358, 106827, 50, (2019)
14.
go back to reference Cortez, R., Tossounian, H.: Uniform propagation of chaos for the thermostated KAC model. J. Stat. Phys. 183(2), Paper No. 28, 17 (2021) Cortez, R., Tossounian, H.: Uniform propagation of chaos for the thermostated KAC model. J. Stat. Phys. 183(2), Paper No. 28, 17 (2021)
15.
go back to reference Einav, A.: On Villani’s conjecture concerning entropy production for the KAC master equation. Kinet. Relat. Models 4(2), 479–497 (2011)MathSciNetCrossRef Einav, A.: On Villani’s conjecture concerning entropy production for the KAC master equation. Kinet. Relat. Models 4(2), 479–497 (2011)MathSciNetCrossRef
16.
go back to reference Filmus, Y.: An orthogonal basis for functions over a slice of the Boolean hypercube. Electron. J. Combin. 23(1), Paper 1.23, 27 (2016) Filmus, Y.: An orthogonal basis for functions over a slice of the Boolean hypercube. Electron. J. Combin. 23(1), Paper 1.23, 27 (2016)
17.
go back to reference Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the boltzmann equation. J. Stat. Phys. 81, 901–934 (1995)MathSciNetCrossRef Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the boltzmann equation. J. Stat. Phys. 81, 901–934 (1995)MathSciNetCrossRef
19.
go back to reference Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result: “Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum” [Comm. Math. Phys. 105(2), 189–203 (1986); MR0849204 (88d:82061)] and “Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum” [ibid. 113(1), 79–85 (1987); MR0918406 (89b:82052)] by Pulvirenti. Commun. Math. Phys. 121(1), 143–146 (1989) Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for two- and three-dimensional rare gas in vacuum. Erratum and improved result: “Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum” [Comm. Math. Phys. 105(2), 189–203 (1986); MR0849204 (88d:82061)] and “Global validity of the Boltzmann equation for a three-dimensional rare gas in vacuum” [ibid. 113(1), 79–85 (1987); MR0918406 (89b:82052)] by Pulvirenti. Commun. Math. Phys. 121(1), 143–146 (1989)
20.
go back to reference Ippoliti, M., Gullans, M.J., Gopalakrishnan, S., Huse, D.A., Khemani, V.: Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 11, 011030 (2021). Feb Ippoliti, M., Gullans, M.J., Gopalakrishnan, S., Huse, D.A., Khemani, V.: Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 11, 011030 (2021). Feb
21.
22.
go back to reference Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley-Los Angeles, California (1956) Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley-Los Angeles, California (1956)
23.
go back to reference Kac, M.: Probability and related topics in physical sciences, volume 1957 of Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado. Interscience Publishers, London-New York. With special lectures by G.E. Uhlenbeck, A.R. Hibbs, and B. van der Pol (1959) Kac, M.: Probability and related topics in physical sciences, volume 1957 of Lectures in Applied Mathematics (Proceedings of the Summer Seminar, Boulder, Colorado. Interscience Publishers, London-New York. With special lectures by G.E. Uhlenbeck, A.R. Hibbs, and B. van der Pol (1959)
24.
go back to reference Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. 17(5), 315–318 (1931)CrossRef Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. 17(5), 315–318 (1931)CrossRef
25.
go back to reference Lanford, O.E. III.: A derivation of the Boltzmann equation from classical mechanics. In: Probability (Proc. Sympos. Pure Math., vol. XXXI, Univ. Illinois, Urbana, Ill., 1976), pp. 87–89. Amer. Math. Soc., Providence, R.I. (1977) Lanford, O.E. III.: A derivation of the Boltzmann equation from classical mechanics. In: Probability (Proc. Sympos. Pure Math., vol. XXXI, Univ. Illinois, Urbana, Ill., 1976), pp. 87–89. Amer. Math. Soc., Providence, R.I. (1977)
27.
go back to reference Sznitman, A.-S.: Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66(4), 559–592 (1984)MathSciNetCrossRef Sznitman, A.-S.: Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66(4), 559–592 (1984)MathSciNetCrossRef
28.
go back to reference Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)MathSciNetCrossRef Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)MathSciNetCrossRef
29.
Metadata
Title
Approach to Equilibrium for the Kac Model
Authors
Federico Bonetto
Eric A. Carlen
Lukas Hauger
Michael Loss
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-65195-3_8

Premium Partner