Skip to main content
Top

2021 | OriginalPaper | Chapter

Approaches for Generation of Lymphatic Vessels

Authors : Sabrina Rohringer, Mira Schaupper, Wolfgang Holnthoner

Published in: Vascularization for Tissue Engineering and Regenerative Medicine

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The lymphatic system plays an important role in fluid homeostasis, immune cell trafficking, and fat absorption. Due to injury, diseases, or surgery, the lymphatic system can be disrupted which often leads to lymphedema in the adjacent extremities. Tissue engineering is an emerging research field dealing with the substitution of nonfunctional parts of the human body with in vitro engineered tissues. Regenerative approaches try to stimulate the formation of functional tissues in situ. During the last few decades, the construction of blood vessels in vitro to supply engineered tissues with nutrients gained more and more interest. However, research in the field of lymphatic development stayed behind, but several approaches for lymphatics engineering were developed so far. Lymphatic endothelial cells can be seeded to scaffold materials and afterwards implanted into sites of disrupted lymphatic vasculature. Several regenerative approaches describe the stimulation of lymph vessel growth in vivo. Although the methods developed so far hold promise for the clinical use of engineered lymphatics, the optimal parameters for lymphatic engineering remain a challenge for future studies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ (2010) Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am J Pathol 177(6):3202–3214CrossRef Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ (2010) Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am J Pathol 177(6):3202–3214CrossRef
go back to reference Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362CrossRef Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362CrossRef
go back to reference Banerji S, Ni J, Wang S-X, Clasper S, Jeffrey S, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801CrossRef Banerji S, Ni J, Wang S-X, Clasper S, Jeffrey S, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801CrossRef
go back to reference Baumeister R, Mayo W, Notohamiprodjo M, Wallmichrath J, Springer S, Frick A (2015) Microsurgical lymphatic vessel transplantation. J Reconstr Microsurg 32(01):034–041CrossRef Baumeister R, Mayo W, Notohamiprodjo M, Wallmichrath J, Springer S, Frick A (2015) Microsurgical lymphatic vessel transplantation. J Reconstr Microsurg 32(01):034–041CrossRef
go back to reference Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-α9 is required for Fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186CrossRef Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-α9 is required for Fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186CrossRef
go back to reference Björndahl M, Cao R, Johan Nissen L, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci 102(43):15593–15598CrossRef Björndahl M, Cao R, Johan Nissen L, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci 102(43):15593–15598CrossRef
go back to reference Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92(7):801–808CrossRef Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92(7):801–808CrossRef
go back to reference Bonvin C, Overney J, Shieh AC, Brandon Dixon J, Swartz MA (2010) A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications. Biotechnol Bioeng 105(5):982–991 Bonvin C, Overney J, Shieh AC, Brandon Dixon J, Swartz MA (2010) A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications. Biotechnol Bioeng 105(5):982–991
go back to reference Breier G (2005) Lymphangiogenesis in regenerating tissue. Circ Res 96(11):1132–1134CrossRef Breier G (2005) Lymphangiogenesis in regenerating tissue. Circ Res 96(11):1132–1134CrossRef
go back to reference Broggi MAS, Schmaler M, Lagarde N, Rossi SW (2014) Isolation of murine lymph node stromal cells. J Vis Exp 19(90):e51803 Broggi MAS, Schmaler M, Lagarde N, Rossi SW (2014) Isolation of murine lymph node stromal cells. J Vis Exp 19(90):e51803
go back to reference Bruyère F, Noël A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24(1):8–21CrossRef Bruyère F, Noël A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24(1):8–21CrossRef
go back to reference Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94(5):664–670CrossRef Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94(5):664–670CrossRef
go back to reference Carlson JA (2014) Lymphedema and subclinical lymphostasis (microlymphedema) facilitate cutaneous infection, inflammatory dermatoses, and neoplasia: a locus minoris resistentiae. Clin Dermatol 32(5):599–615CrossRef Carlson JA (2014) Lymphedema and subclinical lymphostasis (microlymphedema) facilitate cutaneous infection, inflammatory dermatoses, and neoplasia: a locus minoris resistentiae. Clin Dermatol 32(5):599–615CrossRef
go back to reference Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101(32):11658–11663CrossRef Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101(32):11658–11663CrossRef
go back to reference Chikly B (1997) Who discovered the lymphatic system? Lymphology 30(4):186–193 Chikly B (1997) Who discovered the lymphatic system? Lymphology 30(4):186–193
go back to reference Clavin NW, Avraham T, Fernandez J, Sv D, Ma S, Chaudhry A, Bj M (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295(5):H2113–H2127CrossRef Clavin NW, Avraham T, Fernandez J, Sv D, Ma S, Chaudhry A, Bj M (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295(5):H2113–H2127CrossRef
go back to reference Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, Ott HC, Jauch K-W, Bruns CJ (2009) Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 119(2):281–289CrossRef Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, Ott HC, Jauch K-W, Bruns CJ (2009) Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 119(2):281–289CrossRef
go back to reference Cueni LN, Detmar M (2006) New insights into the molecular control of the lymphatic vascular system and its role in disease. J Investig Dermatol 126(10):2167–2177CrossRef Cueni LN, Detmar M (2006) New insights into the molecular control of the lymphatic vascular system and its role in disease. J Investig Dermatol 126(10):2167–2177CrossRef
go back to reference Cursiefen C, Lu C, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Reza Dana M, Wiegand SJ, Wayne Streilein J (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050CrossRef Cursiefen C, Lu C, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Reza Dana M, Wiegand SJ, Wayne Streilein J (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050CrossRef
go back to reference Dai TT, Jiang ZH, Li SL, Zhou GD, Kretlow JD, Cao WG, Liu W, Cao YL (2010) Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150(1):182–189CrossRef Dai TT, Jiang ZH, Li SL, Zhou GD, Kretlow JD, Cao WG, Liu W, Cao YL (2010) Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150(1):182–189CrossRef
go back to reference Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, Tadaki D, Elster EA (2009) Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury*. Int Wound J 6(1):11–21CrossRef Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, Tadaki D, Elster EA (2009) Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury*. Int Wound J 6(1):11–21CrossRef
go back to reference DiMaio TA, Wentz BL, Lagunoff M (2016) Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res 340(1):159–169CrossRef DiMaio TA, Wentz BL, Lagunoff M (2016) Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res 340(1):159–169CrossRef
go back to reference Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, Armant M, Turley SJ (2011) Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Immunol Tolerance 2:35 Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, Armant M, Turley SJ (2011) Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Immunol Tolerance 2:35
go back to reference Földi M, Strössenreuther RHK (2004) Physiological lymph drainage. Foundations of manual lymph drainage: 28–38 Földi M, Strössenreuther RHK (2004) Physiological lymph drainage. Foundations of manual lymph drainage: 28–38
go back to reference Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg 92(4):846–854CrossRef Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg 92(4):846–854CrossRef
go back to reference Garrafa E, Trainini L, Benetti A, Saba E, Fezzardi L, Lorusso B, Borghetti P et al (2005) Isolation, purification, and heterogeneity of human lymphatic endothelial cells from different tissues. Lymphology 38(4):159–166 Garrafa E, Trainini L, Benetti A, Saba E, Fezzardi L, Lorusso B, Borghetti P et al (2005) Isolation, purification, and heterogeneity of human lymphatic endothelial cells from different tissues. Lymphology 38(4):159–166
go back to reference Gibot L, Galbraith T, Kloos B, Das S, Lacroix DA, Auger FA, Skobe M (2016) Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78(February):129–139CrossRef Gibot L, Galbraith T, Kloos B, Das S, Lacroix DA, Auger FA, Skobe M (2016) Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78(February):129–139CrossRef
go back to reference Goldman J, Le TX, Skobe M, Swartz MA (2005) Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 96(11):1193–1199CrossRef Goldman J, Le TX, Skobe M, Swartz MA (2005) Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 96(11):1193–1199CrossRef
go back to reference Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmökel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA (2007) Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 21(4):1003–1012CrossRef Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmökel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA (2007) Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 21(4):1003–1012CrossRef
go back to reference Haraldsen G, Rugtveit J, Kvale D, Scholz T, Muller WA, Hovig T, Brandtzaeg P (1995) Isolation and longterm culture of human intestinal microvascular endothelial cells. Gut 37(2):225–234CrossRef Haraldsen G, Rugtveit J, Kvale D, Scholz T, Muller WA, Hovig T, Brandtzaeg P (1995) Isolation and longterm culture of human intestinal microvascular endothelial cells. Gut 37(2):225–234CrossRef
go back to reference Haupt G (1997) Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 158(1):4–11CrossRef Haupt G (1997) Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 158(1):4–11CrossRef
go back to reference Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119CrossRef Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119CrossRef
go back to reference Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813CrossRef Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813CrossRef
go back to reference Helm C-LE, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 96(1):167–176CrossRef Helm C-LE, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 96(1):167–176CrossRef
go back to reference Hirakawa S, Hong Y-K, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586CrossRef Hirakawa S, Hong Y-K, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586CrossRef
go back to reference Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678CrossRef Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678CrossRef
go back to reference Jahnsen FL, Brandtzaeg P, Haye R, Haraldsen G (1997) Expression of functional VCAM-1 by cultured nasal polyp-derived microvascular endothelium. Am J Pathol 150(6):2113–2123 Jahnsen FL, Brandtzaeg P, Haye R, Haraldsen G (1997) Expression of functional VCAM-1 by cultured nasal polyp-derived microvascular endothelium. Am J Pathol 150(6):2113–2123
go back to reference Jeltsch M, Tammela T, Alitalo K, Wilting J (2003) Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res 314(1):69–84CrossRef Jeltsch M, Tammela T, Alitalo K, Wilting J (2003) Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res 314(1):69–84CrossRef
go back to reference Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen V-M, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971CrossRef Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen V-M, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971CrossRef
go back to reference Jiang Z, Hu X, Kretlow JD, Liu N (2010) Harvesting and cryopreservation of lymphatic endothelial cells for lymphatic tissue engineering. Cryobiology 60(2):177–183CrossRef Jiang Z, Hu X, Kretlow JD, Liu N (2010) Harvesting and cryopreservation of lymphatic endothelial cells for lymphatic tissue engineering. Cryobiology 60(2):177–183CrossRef
go back to reference Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895CrossRef Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895CrossRef
go back to reference Kesler CT, Liao S, Munn LL, Padera TP (2013) Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(1):111–124CrossRef Kesler CT, Liao S, Munn LL, Padera TP (2013) Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(1):111–124CrossRef
go back to reference Kilarski WW, Muchowicz A, Wachowska M, Mężyk-Kopeć R, Golab J, Swartz MA, Nowak-Sliwinska P (2014) Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis 17(2):347–357CrossRef Kilarski WW, Muchowicz A, Wachowska M, Mężyk-Kopeć R, Golab J, Swartz MA, Nowak-Sliwinska P (2014) Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis 17(2):347–357CrossRef
go back to reference Kim IG, Lee JY, Lee DS, Kwon JY, Hwang JH (2013) Extracorporeal shock wave therapy combined with vascular endothelial growth factor-C hydrogel for lymphangiogenesis. J Vasc Res 50(2):124–133CrossRef Kim IG, Lee JY, Lee DS, Kwon JY, Hwang JH (2013) Extracorporeal shock wave therapy combined with vascular endothelial growth factor-C hydrogel for lymphangiogenesis. J Vasc Res 50(2):124–133CrossRef
go back to reference Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194(6):797–808CrossRef Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194(6):797–808CrossRef
go back to reference Kubo M, Li T-S, Kamota T, Ohshima M, Shirasawa B, Hamano K (2010) Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J Vasc Surg 52(2):429–434CrossRef Kubo M, Li T-S, Kamota T, Ohshima M, Shirasawa B, Hamano K (2010) Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J Vasc Surg 52(2):429–434CrossRef
go back to reference Lee S-J, Park C, Lee JY, Kim S, Kwon PJ, Kim W, Jeon YH, Lee E, Yoon Y-S (2015) Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 5(June):11019CrossRef Lee S-J, Park C, Lee JY, Kim S, Kwon PJ, Kim W, Jeon YH, Lee E, Yoon Y-S (2015) Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 5(June):11019CrossRef
go back to reference Lievens PC (1991) The effect of a combined HeNe and I.R. laser treatment on the regeneration of the lymphatic system during the process of wound healing. Lasers Med Sci 6(2):193–199CrossRef Lievens PC (1991) The effect of a combined HeNe and I.R. laser treatment on the regeneration of the lymphatic system during the process of wound healing. Lasers Med Sci 6(2):193–199CrossRef
go back to reference Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8(11):1255–1265CrossRef Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8(11):1255–1265CrossRef
go back to reference Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199CrossRef Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199CrossRef
go back to reference Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6(221):221ra14–221ra14CrossRef Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6(221):221ra14–221ra14CrossRef
go back to reference Marsee DK, Pinkus GS, Hornick JL (2009) Podoplanin (D2-40) is a highly effective marker of follicular dendritic cells. Appl Immunohistochem Mol Morphol 17(2):102–107CrossRef Marsee DK, Pinkus GS, Hornick JL (2009) Podoplanin (D2-40) is a highly effective marker of follicular dendritic cells. Appl Immunohistochem Mol Morphol 17(2):102–107CrossRef
go back to reference Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, Schaden W, Redl H (2011) Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 253(5):1024–1032CrossRef Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, Schaden W, Redl H (2011) Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 253(5):1024–1032CrossRef
go back to reference Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, Stojadinovic A, Schaden W (2012) Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen 20(4):456–465 Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, Stojadinovic A, Schaden W (2012) Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen 20(4):456–465
go back to reference Murphy K, Weaver C (2016) Janeway’s immunobiology, 9th edn. Garland Science, New YorkCrossRef Murphy K, Weaver C (2016) Janeway’s immunobiology, 9th edn. Garland Science, New YorkCrossRef
go back to reference Ng CP, Helm C-LE, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68(3):258–264CrossRef Ng CP, Helm C-LE, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68(3):258–264CrossRef
go back to reference Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R, Dupraz P, Pepper MS (2004) Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol 165(1):11–24CrossRef Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R, Dupraz P, Pepper MS (2004) Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol 165(1):11–24CrossRef
go back to reference Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R-i, Hasegawa M, Nishikawa S-i, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696CrossRef Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R-i, Hasegawa M, Nishikawa S-i, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696CrossRef
go back to reference Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156(5):1499–1504CrossRef Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156(5):1499–1504CrossRef
go back to reference Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412CrossRef Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412CrossRef
go back to reference Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180(5):3399–3405CrossRef Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180(5):3399–3405CrossRef
go back to reference Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH (2007) Intrinsic pump-conduit behavior of lymphangions. Am J Physiol Regul Integr Comp Physiol 292(4):R1510–R1518CrossRef Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH (2007) Intrinsic pump-conduit behavior of lymphangions. Am J Physiol Regul Integr Comp Physiol 292(4):R1510–R1518CrossRef
go back to reference Rohringer S, Holnthoner W, Hackl M, Weihs AM, Rünzler D, Skalicky S, Karbiener M et al (2014) Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS One 9(12):e114806CrossRef Rohringer S, Holnthoner W, Hackl M, Weihs AM, Rünzler D, Skalicky S, Karbiener M et al (2014) Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS One 9(12):e114806CrossRef
go back to reference Sabine A, Agalarov Y, Hajjami HM-E, Jaquet M, Hägerling R, Pollmann C, Bebber D et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22(2):430–445CrossRef Sabine A, Agalarov Y, Hajjami HM-E, Jaquet M, Hägerling R, Pollmann C, Bebber D et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22(2):430–445CrossRef
go back to reference Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, Nishikawa T et al (2006) Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114(11):1177–1184CrossRef Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, Nishikawa T et al (2006) Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114(11):1177–1184CrossRef
go back to reference Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, Williams M et al (2003) T1|[alpha]|/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22(14):3546–3556CrossRef Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, Williams M et al (2003) T1|[alpha]|/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22(14):3546–3556CrossRef
go back to reference Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong Y-K, Detmar M (2005) Up-Regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166(3):913–921CrossRef Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong Y-K, Detmar M (2005) Up-Regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166(3):913–921CrossRef
go back to reference Schweighofer B, Rohringer S, Pröll J, Holnthoner W (2015) A microarray analysis of two distinct lymphatic endothelial cell populations. Genomics Data 4(June):115–118CrossRef Schweighofer B, Rohringer S, Pröll J, Holnthoner W (2015) A microarray analysis of two distinct lymphatic endothelial cell populations. Genomics Data 4(June):115–118CrossRef
go back to reference Serizawa F, Ito K, Matsubara M, Sato A, Shimokawa H, Satomi S (2011) Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg 42(2):254–260CrossRef Serizawa F, Ito K, Matsubara M, Sato A, Shimokawa H, Satomi S (2011) Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg 42(2):254–260CrossRef
go back to reference Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198CrossRef Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198CrossRef
go back to reference Szuba A, Rockson SG (1998) Lymphedema: classification, diagnosis and therapy. Vasc Med 3(2):145–156CrossRef Szuba A, Rockson SG (1998) Lymphedema: classification, diagnosis and therapy. Vasc Med 3(2):145–156CrossRef
go back to reference Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476CrossRef Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476CrossRef
go back to reference Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M, Abo-Ramadan U, Ylä-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466CrossRef Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M, Abo-Ramadan U, Ylä-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466CrossRef
go back to reference Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schönbein GW (2001) Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15(10):1711–1717CrossRef Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schönbein GW (2001) Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15(10):1711–1717CrossRef
go back to reference Weitman E, Cuzzone D, Mehrara BJ (2013) Tissue engineering and regeneration of lymphatic structures. Future Oncol 9(9):1365–1374CrossRef Weitman E, Cuzzone D, Mehrara BJ (2013) Tissue engineering and regeneration of lymphatic structures. Future Oncol 9(9):1365–1374CrossRef
go back to reference Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513CrossRef Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513CrossRef
go back to reference Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological Regulation and roles in inflammation and cancer. Physiol Rev 92(3):1005–1060CrossRef Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological Regulation and roles in inflammation and cancer. Physiol Rev 92(3):1005–1060CrossRef
Metadata
Title
Approaches for Generation of Lymphatic Vessels
Authors
Sabrina Rohringer
Mira Schaupper
Wolfgang Holnthoner
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-319-54586-8_8