Skip to main content
Top
Published in: Rare Metals 7/2023

03-05-2018

Approaches to electrodeposit molybdenum from ionic liquid

Authors: Xiao-Tian Hu, Jian-Gang Qian, Ying Yin, Xin Li, Tie-Jun Li, Jing Li

Published in: Rare Metals | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molybdenum is a kind of refractory metal and can hardly be deposited in aqueous solution since it is more likely to form molybdenum oxide rather than elementary Mo, but molten salts and ionic liquid become alternative to obtain Mo layer. This paper shows an available process to obtain metallic state molybdenum deposit from ionic liquid. Mo layer was electrodeposited under constant current in ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). Micromorphology of the electrodeposited Mo layer was observed by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Results show that elementary Mo layer was electrodeposited under constant current in ionic liquid BMIMBF4. Properties of the Mo layer are affected significantly by additive ethylene glycol (EG), deposition temperature and current density. By parallel tests taking into consideration of different technical factors, optimized process parameters are obtained as volume ratio of 2:1 in BMIMBF4 + EG system, deposition temperature of 150 °C and current density of 0.75 mA·cm−2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Wang DH, Yuan XB, Li ZK, Zheng X, Zhang JL, Zhang XM, Zhang Q. Progress of research and applications for Mo metal and its alloys. Rare Met Lett. 2006;12:1. Wang DH, Yuan XB, Li ZK, Zheng X, Zhang JL, Zhang XM, Zhang Q. Progress of research and applications for Mo metal and its alloys. Rare Met Lett. 2006;12:1.
[2]
go back to reference Saji VS, Lee CW. Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem. 2012;5(7):1146.CrossRef Saji VS, Lee CW. Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem. 2012;5(7):1146.CrossRef
[3]
go back to reference Lou ZN, Li YX, Ren FQ, Zhang Q, Wan L, Xing ZQ, Zang SL, Xiong Y. Selectivity recovery of molybdenum(VI) from rhenium(VII) by amine-modified persimmon waste. Rare Met. 2016;35(6):502–8.CrossRef Lou ZN, Li YX, Ren FQ, Zhang Q, Wan L, Xing ZQ, Zang SL, Xiong Y. Selectivity recovery of molybdenum(VI) from rhenium(VII) by amine-modified persimmon waste. Rare Met. 2016;35(6):502–8.CrossRef
[4]
go back to reference Wang L, Sun J, Sun YJ, Luo JH, Wang JW, Zhao BH. Effects of doping methods on microstructure and mechanical properties of Mo–La2O3. Rare Met Mater Eng. 2007;36(10):1827. Wang L, Sun J, Sun YJ, Luo JH, Wang JW, Zhao BH. Effects of doping methods on microstructure and mechanical properties of Mo–La2O3. Rare Met Mater Eng. 2007;36(10):1827.
[5]
go back to reference Perepezko JH. Surface engineering of Mo-base alloys for elevated-temperature environmental resistance. Annu Rev Mater Res. 2015;45(45):519.CrossRef Perepezko JH. Surface engineering of Mo-base alloys for elevated-temperature environmental resistance. Annu Rev Mater Res. 2015;45(45):519.CrossRef
[6]
go back to reference Aydinyan SV, Kirakosyan HV, Kharatyan SL. Cu–Mo composite powders obtained by combustion–coreduction process. Int J Refract Metal Hard Mater. 2016;54:455.CrossRef Aydinyan SV, Kirakosyan HV, Kharatyan SL. Cu–Mo composite powders obtained by combustion–coreduction process. Int J Refract Metal Hard Mater. 2016;54:455.CrossRef
[7]
go back to reference Zhang XL, Hao JM. Study on process and properties of plasma sprayed molybdenum coating. Hot Work Technol. 2009;38(4):60. Zhang XL, Hao JM. Study on process and properties of plasma sprayed molybdenum coating. Hot Work Technol. 2009;38(4):60.
[8]
go back to reference Liu XZ, Xiong LP, Liu XZ, Chen J, Luo YF, Sun Y. Preparation of electrodeposited Mo–Ni coating and its spectral properties. Spectrosc Spectr Anal. 2014;34(4):1109. Liu XZ, Xiong LP, Liu XZ, Chen J, Luo YF, Sun Y. Preparation of electrodeposited Mo–Ni coating and its spectral properties. Spectrosc Spectr Anal. 2014;34(4):1109.
[9]
go back to reference Lin CC, Kong MG, Zhu HY, Huang LP, Zheng XB, Zeng Y. Tribological behavior of vacuum plasma sprayed B4C–Mo composite coating. J Inorg Mater. 2016;31(1):100.CrossRef Lin CC, Kong MG, Zhu HY, Huang LP, Zheng XB, Zeng Y. Tribological behavior of vacuum plasma sprayed B4C–Mo composite coating. J Inorg Mater. 2016;31(1):100.CrossRef
[10]
go back to reference Wang Y, Wang D, Zhu W, Wang Y, Wang D, Zhu W, Liu H, Zan X. Microstructure and properties of hot-rolled 2.0 wt.% MoSi2/rare earth oxide doped molybdenum alloys. Int J Refract Metal Hard Mater. 2012;31(3):152.CrossRef Wang Y, Wang D, Zhu W, Wang Y, Wang D, Zhu W, Liu H, Zan X. Microstructure and properties of hot-rolled 2.0 wt.% MoSi2/rare earth oxide doped molybdenum alloys. Int J Refract Metal Hard Mater. 2012;31(3):152.CrossRef
[11]
go back to reference Gao BL, Wang ZW, Nohira T, Hagiwara R. Electrodeposition of molybdenum in LiTFSI-CsTFSI low-temperature melt. Rare Met Mater Eng. 2011;40(7):1292. Gao BL, Wang ZW, Nohira T, Hagiwara R. Electrodeposition of molybdenum in LiTFSI-CsTFSI low-temperature melt. Rare Met Mater Eng. 2011;40(7):1292.
[12]
go back to reference Leyral G, Ribes M, Courthéoux L, Uzio D, Pradel A. Synthesis and structuring of Ni MoS2 by using an ionic liquid. Eur J Inorg Chem. 2012;2012(31):4967.CrossRef Leyral G, Ribes M, Courthéoux L, Uzio D, Pradel A. Synthesis and structuring of Ni MoS2 by using an ionic liquid. Eur J Inorg Chem. 2012;2012(31):4967.CrossRef
[13]
go back to reference Redel E, Thomann R, Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem Commun. 2008;15(15):1789.CrossRef Redel E, Thomann R, Janiak C. Use of ionic liquids (ILs) for the IL-anion size-dependent formation of Cr, Mo and W nanoparticles from metal carbonyl M(CO)6 precursors. Chem Commun. 2008;15(15):1789.CrossRef
[14]
go back to reference Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science. 2000;290(5499):2120.CrossRef Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science. 2000;290(5499):2120.CrossRef
[15]
go back to reference Senderoff S, Brenner A. The electrolytic preparation of molybdenum from fused salts I. electrolytic studies. J Electrochem Soc. 1954;101(1):16.CrossRef Senderoff S, Brenner A. The electrolytic preparation of molybdenum from fused salts I. electrolytic studies. J Electrochem Soc. 1954;101(1):16.CrossRef
[16]
go back to reference Makyta M, Utigard T, Zatko P. Electroreduction from KF–B2O3–K2MoO4 Melts. Sintra: Molten Salt Forum: Trans. Techn. Publ.; 1993. 161. Makyta M, Utigard T, Zatko P. Electroreduction from KF–B2O3–K2MoO4 Melts. Sintra: Molten Salt Forum: Trans. Techn. Publ.; 1993. 161.
[17]
go back to reference Allahyarzadeh MH, Roozbehani B, Ashrafi A, Shadizadeh SR. Electrodeposition of high Mo content amorphous/nanocrystalline Ni–Mo alloys using 1-methyl-imidazolium chloride ionic liquid as an additive. Surf Coat Technol. 2011;206(1):137.CrossRef Allahyarzadeh MH, Roozbehani B, Ashrafi A, Shadizadeh SR. Electrodeposition of high Mo content amorphous/nanocrystalline Ni–Mo alloys using 1-methyl-imidazolium chloride ionic liquid as an additive. Surf Coat Technol. 2011;206(1):137.CrossRef
[18]
go back to reference Rogers RD, Seddon KR. Ionic liquids–solvents of the future. Science. 2003;302(5646):792.CrossRef Rogers RD, Seddon KR. Ionic liquids–solvents of the future. Science. 2003;302(5646):792.CrossRef
[19]
go back to reference Fashu S, Gu CD, Zhang JL, Huang ML, Wang XL, Tu JP. Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans Nonferr Met Soc China. 2015;25(6):2054.CrossRef Fashu S, Gu CD, Zhang JL, Huang ML, Wang XL, Tu JP. Effect of EDTA and NH4Cl additives on electrodeposition of Zn–Ni films from choline chloride-based ionic liquid. Trans Nonferr Met Soc China. 2015;25(6):2054.CrossRef
[20]
go back to reference Simka W, Puszczyk D, Nawrat G. Electrodeposition of metals from non-aqueous solutions. Electrochim Acta. 2009;54(23):5307.CrossRef Simka W, Puszczyk D, Nawrat G. Electrodeposition of metals from non-aqueous solutions. Electrochim Acta. 2009;54(23):5307.CrossRef
[21]
go back to reference Wasserscheid P, Keim W. Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed. 2000;39(21):3772.CrossRef Wasserscheid P, Keim W. Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed. 2000;39(21):3772.CrossRef
[22]
go back to reference Eugénio S, Rangel CM, Vilar R, Rego ABD. Electrodeposition of black chromium spectrally selective coatings from a Cr(III)–ionic liquid solution. Thin Solid Films. 2011;519(6):1845.CrossRef Eugénio S, Rangel CM, Vilar R, Rego ABD. Electrodeposition of black chromium spectrally selective coatings from a Cr(III)–ionic liquid solution. Thin Solid Films. 2011;519(6):1845.CrossRef
[23]
go back to reference Abedin SZE, Endres F. Ionic liquids: the link to high-temperature molten salts. Acc Chem Res. 2007;40(11):1106.CrossRef Abedin SZE, Endres F. Ionic liquids: the link to high-temperature molten salts. Acc Chem Res. 2007;40(11):1106.CrossRef
[24]
go back to reference Armand M, Endres F, Macfarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8(8):621.CrossRef Armand M, Endres F, Macfarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8(8):621.CrossRef
[25]
go back to reference Salman RA, Meng X, Zhao J, Li Y, Kynast U, Lezhnina MM, Endres F. Semiconductor nanostructures via electrodeposition from ionic liquids. Pure Appl Chem. 2010;82(8):1673.CrossRef Salman RA, Meng X, Zhao J, Li Y, Kynast U, Lezhnina MM, Endres F. Semiconductor nanostructures via electrodeposition from ionic liquids. Pure Appl Chem. 2010;82(8):1673.CrossRef
[26]
go back to reference Liu KR, Liu Q, Han Q, Tu GF. Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl3 ionic liquids. Trans Nonferr Met Soc China. 2011;21(9):2104.CrossRef Liu KR, Liu Q, Han Q, Tu GF. Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl3 ionic liquids. Trans Nonferr Met Soc China. 2011;21(9):2104.CrossRef
[27]
go back to reference Nitta K, Majima M, Inazawa S, Kitagawa K, Nohira T, Hagiwara R. Electrodeposition of molybdenum from molten salt. SEI Tech Rev. 2010;70:75. Nitta K, Majima M, Inazawa S, Kitagawa K, Nohira T, Hagiwara R. Electrodeposition of molybdenum from molten salt. SEI Tech Rev. 2010;70:75.
[28]
go back to reference Gao BL, Wang ZW, Nohira T, Hagiwara R. Electroreduction of MoCl5 in room temperature ionic liquid at 150 °C. Rare Met Mater Eng. 2011;40(9):1676. Gao BL, Wang ZW, Nohira T, Hagiwara R. Electroreduction of MoCl5 in room temperature ionic liquid at 150 °C. Rare Met Mater Eng. 2011;40(9):1676.
[29]
go back to reference Kazamaa R, Matsumiya M, Tsuda N, Tsunashima K. Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids. Electrochim Acta. 2013;113(4):269.CrossRef Kazamaa R, Matsumiya M, Tsuda N, Tsunashima K. Electrochemical analysis of diffusion behavior and nucleation mechanism for Dy(II) and Dy(III) in phosphonium-based ionic liquids. Electrochim Acta. 2013;113(4):269.CrossRef
[30]
go back to reference Kondo H, Matsumiya M, Tsunashima K, Kodama S. Attempts to the electrodeposition of Nd from ionic liquids at elevated temperatures. Electrochim Acta. 2012;66(4):313.CrossRef Kondo H, Matsumiya M, Tsunashima K, Kodama S. Attempts to the electrodeposition of Nd from ionic liquids at elevated temperatures. Electrochim Acta. 2012;66(4):313.CrossRef
[31]
go back to reference Sanches L, Marino CB, Mascaro LH. Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions. J Alloys Compd. 2007;439(1):342.CrossRef Sanches L, Marino CB, Mascaro LH. Investigation of the codeposition of Fe and Mo from sulphate-citrate acid solutions. J Alloys Compd. 2007;439(1):342.CrossRef
Metadata
Title
Approaches to electrodeposit molybdenum from ionic liquid
Authors
Xiao-Tian Hu
Jian-Gang Qian
Ying Yin
Xin Li
Tie-Jun Li
Jing Li
Publication date
03-05-2018
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 7/2023
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1040-z

Other articles of this Issue 7/2023

Rare Metals 7/2023 Go to the issue

Premium Partners