Skip to main content
Top

2024 | OriginalPaper | Chapter

Approximate Solutions of the Fractional Zakharov-Kuznetsov Equation Using Laplace-Residual Power Series Method

Authors : Tareq Eriqat, Moa’ath N. Oqielat, Ahmad El-Ajou, Osama Ogilat, Shaher Momani

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An analytical solution is proposed in this work for the non-linear time-fractional Zakharov-Kuznetsov partial differential equation (FZK-PDE) in the Caputo sense. The FZK-PDE model demonstrates the behavior of weakly nonlinear ion-acoustic waves in a plasma with a uniform magnetic field. A series solution for the FZK-PDE is obtained using the so-called Laplace-Residual power series method (L-RPSM). The L-RPSM is a simple and efficient technique for obtaining approximate and exact series solution of nonlinear and linear fractional differential equations (FDEs). Graphical and numerical solutions of several test examples show the reliability and efficiency of the L-RPSM. Moreover, the results show that the L-RPSM is powerful, competitive, simple, and reliable for a wide range of fractional PDEs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kilbasi, A., Saigo, M.: On Mittag-Leffler type function, fractional Calculas operators and solutions of integral equations. Integr. Trans. Spec. Funct. 4(4), 355–370 (1996)CrossRef Kilbasi, A., Saigo, M.: On Mittag-Leffler type function, fractional Calculas operators and solutions of integral equations. Integr. Trans. Spec. Funct. 4(4), 355–370 (1996)CrossRef
2.
go back to reference Almeida, R., Tavares, D., Torres, D.: The Variable-Order Fractional Calculus of Variations. Springer (2019) Almeida, R., Tavares, D., Torres, D.: The Variable-Order Fractional Calculus of Variations. Springer (2019)
3.
go back to reference Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993) Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)
4.
go back to reference Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier (1974) Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier (1974)
5.
go back to reference Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier (1998) Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Elsevier (1998)
6.
go back to reference Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010) Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific (2010)
7.
go back to reference Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16(1), 3–11 (2013)MathSciNet Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16(1), 3–11 (2013)MathSciNet
8.
go back to reference Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos, Solit. Fractals 28(4), 930–937 (2006) Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos, Solit. Fractals 28(4), 930–937 (2006)
9.
go back to reference Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57(3), 483–487 (2009)MathSciNetCrossRef Das, S.: Analytical solution of a fractional diffusion equation by variational iteration method. Comput. Math. Appl. 57(3), 483–487 (2009)MathSciNetCrossRef
10.
go back to reference Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54(7–8), 910–919 (2007)MathSciNetCrossRef Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54(7–8), 910–919 (2007)MathSciNetCrossRef
11.
go back to reference El-Ajou, A., Abu Arqub, O., Momani, S.: Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng. J. 4(3), 539–547 (2013) El-Ajou, A., Abu Arqub, O., Momani, S.: Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng. J. 4(3), 539–547 (2013)
12.
go back to reference Shqair, M., El-Ajou, A., Nairat, M.: Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method. Mathematics 7(7), 633 (2019)CrossRef Shqair, M., El-Ajou, A., Nairat, M.: Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method. Mathematics 7(7), 633 (2019)CrossRef
13.
go back to reference El-Ajou, A., Al-Zhour, Z., Momani, S., Hayat, T.: Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications. Eur. Phys. J. Plus 134(8), 402 (2019)CrossRef El-Ajou, A., Al-Zhour, Z., Momani, S., Hayat, T.: Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications. Eur. Phys. J. Plus 134(8), 402 (2019)CrossRef
14.
go back to reference Oqielat, M., El-Ajou, A., Al-Zhour, Z., Alkhasawneh, R., Alrabaiah, H.: Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and caputo derivatives. Alex. Eng. J. (2020) Oqielat, M., El-Ajou, A., Al-Zhour, Z., Alkhasawneh, R., Alrabaiah, H.: Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and caputo derivatives. Alex. Eng. J. (2020)
15.
go back to reference Eriqat, T., El-Ajou, A., Oqielat, M., Al-Zhour, Z., Momani, S.: A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos, Solit. Fractals 138, 109957 (2020) Eriqat, T., El-Ajou, A., Oqielat, M., Al-Zhour, Z., Momani, S.: A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos, Solit. Fractals 138, 109957 (2020)
16.
go back to reference El-Ajou, A.: Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 136(2), 1–22 (2021)CrossRef El-Ajou, A.: Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 136(2), 1–22 (2021)CrossRef
17.
go back to reference Eriqat, T., Oqielat, M., Al-Zhour, Z., El-Ajou, A., Bataineh, A.: Revisited fisher’s equation and logistic system model: a new fractional approach and some modifications. Int. J. Dyn. Control 1–10 (2022) Eriqat, T., Oqielat, M., Al-Zhour, Z., El-Ajou, A., Bataineh, A.: Revisited fisher’s equation and logistic system model: a new fractional approach and some modifications. Int. J. Dyn. Control 1–10 (2022)
18.
go back to reference Oqielat, M., Eriqat, T., Al-Zhour, Z., Ogilat, M., El-Ajou, A., Hashim, I.: Construction of fractional series solutions to nonlinear fractional reaction–diffusion for bacteria growth model via Laplace residual power series method. Int. J. Dyn. Control 1–8 (2022) Oqielat, M., Eriqat, T., Al-Zhour, Z., Ogilat, M., El-Ajou, A., Hashim, I.: Construction of fractional series solutions to nonlinear fractional reaction–diffusion for bacteria growth model via Laplace residual power series method. Int. J. Dyn. Control 1–8 (2022)
19.
go back to reference Oqielat, M., El-Ajou, A., Al-Zhour, Z., Eriqat, T., Al-Smadi, M.: A new approach to solving Fuzzy quadratic Riccati differential equations. Int. J. Fuzzy Log. Intell. Syst. 22, 23–47 (2022)CrossRef Oqielat, M., El-Ajou, A., Al-Zhour, Z., Eriqat, T., Al-Smadi, M.: A new approach to solving Fuzzy quadratic Riccati differential equations. Int. J. Fuzzy Log. Intell. Syst. 22, 23–47 (2022)CrossRef
20.
go back to reference Oqielat, M., Eriqat, T., Ogilat, M., Odibat, Z., Al-Zhour, Z., Hashim, I.: Approximate solutions of fuzzy fractional population dynamics model. Eur. Phys. J. Plus 137(8), 1–16 (2022)CrossRef Oqielat, M., Eriqat, T., Ogilat, M., Odibat, Z., Al-Zhour, Z., Hashim, I.: Approximate solutions of fuzzy fractional population dynamics model. Eur. Phys. J. Plus 137(8), 1–16 (2022)CrossRef
21.
go back to reference Oqielat, M., Eriqat, T., Al-Zhour, Z., El-Ajou, A., Momani, S.: Numerical solutions of time-fractional nonlinear water wave partial differential equation via Caputo fractional derivative: An effective analytical method and some applications. Appl. Comput. Math. 21(2), 207–222 (2022)MathSciNet Oqielat, M., Eriqat, T., Al-Zhour, Z., El-Ajou, A., Momani, S.: Numerical solutions of time-fractional nonlinear water wave partial differential equation via Caputo fractional derivative: An effective analytical method and some applications. Appl. Comput. Math. 21(2), 207–222 (2022)MathSciNet
22.
go back to reference Zakharov, V.E., Kuznetsov, E.A.: On threedimensional solitons. Zhurnal Eksp. Teoret. Fiz 66, 594–597 (1974) Zakharov, V.E., Kuznetsov, E.A.: On threedimensional solitons. Zhurnal Eksp. Teoret. Fiz 66, 594–597 (1974)
23.
go back to reference Munro, S., Parkes, E.J.: The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62(3), 305–317 (1999)CrossRef Munro, S., Parkes, E.J.: The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions. J. Plasma Phys. 62(3), 305–317 (1999)CrossRef
24.
go back to reference Munro, S., Parkes, E.J.: Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 64(4), 411–426 (2000)CrossRef Munro, S., Parkes, E.J.: Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation. J. Plasma Phys. 64(4), 411–426 (2000)CrossRef
25.
go back to reference Molliq, R., Noorani, M., Hashim, I., Ahmad, R.R.: Approximate solutions of fractional Zakharov–Kuznetsov equations by VIM. J. Comput. Appl. Math. 233(2), 103–108 (2009) Molliq, R., Noorani, M., Hashim, I., Ahmad, R.R.: Approximate solutions of fractional Zakharov–Kuznetsov equations by VIM. J. Comput. Appl. Math. 233(2), 103–108 (2009)
26.
go back to reference Yıldırım, A., Gülkanat, Y.: Analytical approach to fractional Zakharov-Kuznetsov equations by He’s homotopy perturbation method. Commun. Theor. Phys. 53(6), 1005 (2010)MathSciNetCrossRef Yıldırım, A., Gülkanat, Y.: Analytical approach to fractional Zakharov-Kuznetsov equations by He’s homotopy perturbation method. Commun. Theor. Phys. 53(6), 1005 (2010)MathSciNetCrossRef
27.
go back to reference Shah, R., Khan, H., Baleanu, D., Kumam, P., Arif, M.: A novel method for the analytical solution of fractional Zakharov-Kuznetsov equations. Adv. Differ. Equ. 2019(1), 1–14 (2019)MathSciNetCrossRef Shah, R., Khan, H., Baleanu, D., Kumam, P., Arif, M.: A novel method for the analytical solution of fractional Zakharov-Kuznetsov equations. Adv. Differ. Equ. 2019(1), 1–14 (2019)MathSciNetCrossRef
28.
go back to reference Şenol, M., Alquran, M., Kasmaei, H.: On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation. Results Phys. 9, 321–327 (2018)CrossRef Şenol, M., Alquran, M., Kasmaei, H.: On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation. Results Phys. 9, 321–327 (2018)CrossRef
29.
go back to reference El-Ajou, A.: Taylor’s expansion for fractional matrix functions: theory and applications. J. Math. Comp. Sci. 21(1), 1–17 (2020)CrossRef El-Ajou, A.: Taylor’s expansion for fractional matrix functions: theory and applications. J. Math. Comp. Sci. 21(1), 1–17 (2020)CrossRef
Metadata
Title
Approximate Solutions of the Fractional Zakharov-Kuznetsov Equation Using Laplace-Residual Power Series Method
Authors
Tareq Eriqat
Moa’ath N. Oqielat
Ahmad El-Ajou
Osama Ogilat
Shaher Momani
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_32

Premium Partner