Skip to main content
Top

07-11-2024 | Research

Apriori Algorithm-Based Learning Behavior Mining for Mobile Education Platforms

Authors: Mei Hong, Ayed Alwadain, Ahmed Ibrahim Alzahrani

Published in: Mobile Networks and Applications

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to promote learners' learning effectiveness and improve the accuracy of learning behavior mining, this paper conducts research on the Apriori algorithm based learning behavior mining on mobile education platforms. Firstly, web crawler technology is used to capture the behavioral information of learners during the learning process on the mobile education platform to construct learner profiles, and preprocess the sub-network set data of learning behaviors. Secondly, a Hash table is constructed to improve the Apriori algorithm to extract the learning behavior characteristics of learners on the mobile education platform. Then, a Stacking ensemble learning model is built to determine four base learners for model training. Finally, the Stacking ensemble learning model is improved with a chain rule, and conducting k-fold cross-validation to achieve data mining of learning behaviors on the mobile education platform. Comparative experiments have proven that when using the method proposed in this paper for data mining of learning behaviors on the mobile education platform, the normalized difference precision is always above 90%, the mAP value is always above 93%, the mining scope coverage rate is maintained above 90%, and the comprehensiveness is kept above 90%. This indicates that applying the method proposed in this paper to the data mining of learning behaviors on the mobile education platform can improve the accuracy of data mining and has a good mining effect.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Meng F, Zhai JL (2021) Learning Simulation of Network Database Based on Big Data Visualization of Learning Behavior. Computer Simulation 38(09):216–220 Meng F, Zhai JL (2021) Learning Simulation of Network Database Based on Big Data Visualization of Learning Behavior. Computer Simulation 38(09):216–220
3.
go back to reference Wang S, Guo R, Sun J (2023) Recommendation method for MOOC based on graph contrastive learning. Comput Eng 49(1):57–64+72 Wang S, Guo R, Sun J (2023) Recommendation method for MOOC based on graph contrastive learning. Comput Eng 49(1):57–64+72
4.
go back to reference Liu S, He T, Li J et al (2023) An Effective Learning Evaluation Method Based on Text Data with Real-time Attribution - A Case Study for Mathematical Class with Students of Junior Middle School in China. ACM Trans Asian and Low-Resourc Language Inform Process 22(3):63 Liu S, He T, Li J et al (2023) An Effective Learning Evaluation Method Based on Text Data with Real-time Attribution - A Case Study for Mathematical Class with Students of Junior Middle School in China. ACM Trans Asian and Low-Resourc Language Inform Process 22(3):63
5.
go back to reference Peng T, Shan ZL (2021) An Analysis of Online Learning Behavior Based on Two-way Clustering. J South China Norm Univ 53(6):122–128 Peng T, Shan ZL (2021) An Analysis of Online Learning Behavior Based on Two-way Clustering. J South China Norm Univ 53(6):122–128
6.
go back to reference Yang H, Peng L, Liu Q et al (2023) An online anomaly learning behavior detection method based on negative selection algorithm. J South-Central Univ Natl: Nat Sci Edit 42(05):664–671 Yang H, Peng L, Liu Q et al (2023) An online anomaly learning behavior detection method based on negative selection algorithm. J South-Central Univ Natl: Nat Sci Edit 42(05):664–671
7.
go back to reference Li C, Peng P, Cao L (2023) Accurate Mining and Analysis of Socially Shared Regulation of Learning Behavioral Sequences in the Online Collaborative Contexts. Heilongjiang Researc Higher Educ 41(08):116–121 Li C, Peng P, Cao L (2023) Accurate Mining and Analysis of Socially Shared Regulation of Learning Behavioral Sequences in the Online Collaborative Contexts. Heilongjiang Researc Higher Educ 41(08):116–121
8.
go back to reference Yan X, Kuang Y, Bai G et al (2023) Student classroom behavior recognition method based on deep learning. Comput Eng 49(7):251–258 Yan X, Kuang Y, Bai G et al (2023) Student classroom behavior recognition method based on deep learning. Comput Eng 49(7):251–258
9.
go back to reference Li Y, Qi X, Saudagar AKJ et al (2023) Student behavior recognition for interaction detection in the classroom environment. Image Vis Comput 136:104726CrossRef Li Y, Qi X, Saudagar AKJ et al (2023) Student behavior recognition for interaction detection in the classroom environment. Image Vis Comput 136:104726CrossRef
10.
go back to reference Zhang B, Chen Y, Qi Y et al (2022) Learner Comprehensive Evaluation Model Drivenby Multi Source Process Data. Inform Sci 40(05):104–110CrossRef Zhang B, Chen Y, Qi Y et al (2022) Learner Comprehensive Evaluation Model Drivenby Multi Source Process Data. Inform Sci 40(05):104–110CrossRef
11.
go back to reference Wang Y, Xia Y, Liu S (2024) BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues. Comput, Mater Continua 78(3):4489–4507CrossRef Wang Y, Xia Y, Liu S (2024) BCCLR: A Skeleton-Based Action Recognition with Graph Convolutional Network Combining Behavior Dependence and Context Clues. Comput, Mater Continua 78(3):4489–4507CrossRef
12.
go back to reference Ni Q, Hu Y, Qian J et al (2023) Research on Online Learning Input and Learning Behavior Based on Behavioral Sequence. Adult Educ 43(01):49–56 Ni Q, Hu Y, Qian J et al (2023) Research on Online Learning Input and Learning Behavior Based on Behavioral Sequence. Adult Educ 43(01):49–56
13.
go back to reference Wang L, Zhen Z, Wo T et al (2020) A Scalable Operating System Experiment Platform Supporting Learning Behavior Analysis. IEEE Trans Educ 63(3):232–239CrossRef Wang L, Zhen Z, Wo T et al (2020) A Scalable Operating System Experiment Platform Supporting Learning Behavior Analysis. IEEE Trans Educ 63(3):232–239CrossRef
14.
go back to reference Ma S, Yang J, Xu J et al (2022) Using network analysis to identify central symptoms of college students’ mental health. J Affect Dis 311(3):47–54CrossRef Ma S, Yang J, Xu J et al (2022) Using network analysis to identify central symptoms of college students’ mental health. J Affect Dis 311(3):47–54CrossRef
15.
go back to reference Stan L (2022) Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data. Technometrics 64(1):145–148CrossRef Stan L (2022) Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data. Technometrics 64(1):145–148CrossRef
16.
go back to reference Leem S, Oh J, Moon J et al (2024) Enhancing multistep-ahead bike-sharing demand prediction with a two-stage online learning-based time-series model: insight from Seoul. J Supercomput 80(3):4049–4082CrossRef Leem S, Oh J, Moon J et al (2024) Enhancing multistep-ahead bike-sharing demand prediction with a two-stage online learning-based time-series model: insight from Seoul. J Supercomput 80(3):4049–4082CrossRef
17.
go back to reference Taskin N, Cakmak EK (2023) Effects of Gamification on Behavioral and Cognitive Engagement of Students in the Online Learning Environment. Int J Human-Comput Interact 39(16):3334–3345CrossRef Taskin N, Cakmak EK (2023) Effects of Gamification on Behavioral and Cognitive Engagement of Students in the Online Learning Environment. Int J Human-Comput Interact 39(16):3334–3345CrossRef
18.
go back to reference Liu S, Luo Z, Li Y et al (2024) Solution of Wide and Micro Background Bias in Contrast Action Representation Learning. Eng Appl Artif Intell 133:108244CrossRef Liu S, Luo Z, Li Y et al (2024) Solution of Wide and Micro Background Bias in Contrast Action Representation Learning. Eng Appl Artif Intell 133:108244CrossRef
19.
go back to reference Schneid SD, Best BM, Evans SJ et al (2023) Modified team-based learning to promote collaboration in an online prematriculation course. Med Educ 57(5):470–471CrossRef Schneid SD, Best BM, Evans SJ et al (2023) Modified team-based learning to promote collaboration in an online prematriculation course. Med Educ 57(5):470–471CrossRef
20.
go back to reference Cai MJ, Tang R, Wei Y (2023) A Study of Online Learning Behavior of College Students Based on Two-dimensional Quadrant Analysis —Taking the Practice of SPOC in Blended Learning Environment as An Example. E-Educ Res 44(08):49–56 Cai MJ, Tang R, Wei Y (2023) A Study of Online Learning Behavior of College Students Based on Two-dimensional Quadrant Analysis —Taking the Practice of SPOC in Blended Learning Environment as An Example. E-Educ Res 44(08):49–56
21.
go back to reference Demaziere C, Fransson T (2024) Open self-paced introductory course in nuclear engineering – How to guarantee student learning. Nuclear Eng Des 417:1–9CrossRef Demaziere C, Fransson T (2024) Open self-paced introductory course in nuclear engineering – How to guarantee student learning. Nuclear Eng Des 417:1–9CrossRef
22.
go back to reference Wang S, Liu X, Liu S et al (2022) Human Short Long-Term Cognitive Memory Mechanism for Visual Monitoring in IoT-Assisted Smart Cities. IEEE Int Things J 9(10):7128–7139CrossRef Wang S, Liu X, Liu S et al (2022) Human Short Long-Term Cognitive Memory Mechanism for Visual Monitoring in IoT-Assisted Smart Cities. IEEE Int Things J 9(10):7128–7139CrossRef
23.
go back to reference Li K, Zhai Y, Liu J (2022) The influence of horticultural activities on the psychological state of college students participating in online learning during the Covid-19. Eur J Hortic Sci 87(4):1–8CrossRef Li K, Zhai Y, Liu J (2022) The influence of horticultural activities on the psychological state of college students participating in online learning during the Covid-19. Eur J Hortic Sci 87(4):1–8CrossRef
24.
go back to reference Zheng Y, Jin M, Liu Y et al (2023) Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection. IEEE Trans Knowl Data Eng 35(12):12220–12233CrossRef Zheng Y, Jin M, Liu Y et al (2023) Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection. IEEE Trans Knowl Data Eng 35(12):12220–12233CrossRef
25.
Metadata
Title
Apriori Algorithm-Based Learning Behavior Mining for Mobile Education Platforms
Authors
Mei Hong
Ayed Alwadain
Ahmed Ibrahim Alzahrani
Publication date
07-11-2024
Publisher
Springer US
Published in
Mobile Networks and Applications
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-024-02438-1