Skip to main content
Top
Published in: Environmental Earth Sciences 11/2015

01-06-2015 | Thematic Issue

Aqueous carbonation of the potassium-depleted residue from potassium feldspar–CaCl2 calcination for CO2 fixation

Authors: Haoyi Sheng, Li Lv, Bin Liang, Chun Li, Bo Yuan, Longpo Ye, Hairong Yue, Changjun Liu, Yufei Wang, Jiahua Zhu, Heping Xie

Published in: Environmental Earth Sciences | Issue 11/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on the academic thought of carbon capture and utilization, a novel process to integrate the potassium extraction from the insoluble potassium feldspar, industrial waste utilization, and the subsequent CO2 fixation using the resultant potassium-depleted residue was proposed in our previous studies. The potassium-depleted residue comprises several Ca-bearing phases, namely wollastonite (CaSiO3), pseudowollastonite (Ca3Si3O9), Cl-mayenite (Ca12Al14O32Cl2), and anorthite (CaAl2Si2O8), which are potential materials for fixation of CO2 via carbonation. In this study, carbonation of the residue was examined with focuses on the effects of reaction temperature, initial CO2 pressure, particle size of the residue, and reaction duration on the carbonation of these Ca-bearing phases. The results demonstrated that both the temperature and CO2 pressure significantly affect the carbonation, while the residue particle size has only minor influence. At 1 MPa CO2 pressure, the carbonation of these components was dominant at different reaction temperatures. Almost complete carbonation of the pseudowollastonite could be achieved at 75 °C, while significant carbonation of the wollastonite takes place above 100 °C. However, the Cl-mayenite and anorthite are incapable of carbonation even at 200 °C. Increasing the CO2 pressure to 4 MPa can lead to a distinct carbonation of the Cl-mayenite at 150 °C but the anorthite remains untouched. At 1.5 MPa CO2 pressure and 150 °C, with the increasing reaction time, the following Ca-bearing species were successively carbonated: first the pseudowollastonite in 5 min after the reaction started, the wollastonite in 5–15 min, and then simultaneously the wollastonite and the pseudowollastonite in 15–45 min, while the carbonation of Cl-mayenite do not begin even after 120 min. A priority sequence of carbonation of these Ca-bearing minerals was determined as follows: pseudowollastonite > wollastonite > Cl-mayenite > anorthite. The trend is in agreement with the results of thermodynamic calculation. Compared to the carbonation of natural wollastonite, the synthesized wollastonite contained in the potassium-depleted residue seems to be more active in carbonation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bakr MY, Zatout AA, Mouhamed MA (1979) Orthoclase, gypsum and limestone for production of aluminum salt and potassium salt. Interceram 28(1):34–35 Bakr MY, Zatout AA, Mouhamed MA (1979) Orthoclase, gypsum and limestone for production of aluminum salt and potassium salt. Interceram 28(1):34–35
go back to reference Bao WJ, Li HQ, Zhang Y (2010) Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind Eng Chem Res 49(5):2055–2063CrossRef Bao WJ, Li HQ, Zhang Y (2010) Selective leaching of steelmaking slag for indirect CO2 mineral sequestration. Ind Eng Chem Res 49(5):2055–2063CrossRef
go back to reference Béarat H, McKelvy MJ, Chizmeshya AVG et al (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40(15):4802–4808CrossRef Béarat H, McKelvy MJ, Chizmeshya AVG et al (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40(15):4802–4808CrossRef
go back to reference Daval D, Martinez I, Corvisier J et al (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265(1):63–78CrossRef Daval D, Martinez I, Corvisier J et al (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265(1):63–78CrossRef
go back to reference Hangx SJT, Spiers CJ (2009) Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem Geol 265(1):88–98CrossRef Hangx SJT, Spiers CJ (2009) Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem Geol 265(1):88–98CrossRef
go back to reference Hu B, Han XZ, Xiao ZH, Lu YL, Chen M (2005) Distribution of potash feldspar resources in China and its exploitation. Geol Chem Miner 27(1):25–32 Hu B, Han XZ, Xiao ZH, Lu YL, Chen M (2005) Distribution of potash feldspar resources in China and its exploitation. Geol Chem Miner 27(1):25–32
go back to reference Hu YP, Zheng CJ et al (2010) Methods for chemical analysis of silicate rocks-Part 3: Determination of silicon dioxide content. China standard: GB/T 14506.3-2010 Hu YP, Zheng CJ et al (2010) Methods for chemical analysis of silicate rocks-Part 3: Determination of silicon dioxide content. China standard: GB/T 14506.3-2010
go back to reference Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation, literature review. Energy Research Centre of the Netherlands ECN, Petten Huijgen WJJ, Comans RNJ (2003) Carbon dioxide sequestration by mineral carbonation, literature review. Energy Research Centre of the Netherlands ECN, Petten
go back to reference Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682CrossRef Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39(24):9676–9682CrossRef
go back to reference Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61(13):4242–4251CrossRef Huijgen WJJ, Witkamp GJ, Comans RNJ (2006) Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem Eng Sci 61(13):4242–4251CrossRef
go back to reference Jeevaratnam J, Glasser FP, Glasser LSD (1964) Anion Substitution and Structure of 12CaO·7Al2O3. J Am Ceram Soc 47(2):105–106CrossRef Jeevaratnam J, Glasser FP, Glasser LSD (1964) Anion Substitution and Structure of 12CaO·7Al2O3. J Am Ceram Soc 47(2):105–106CrossRef
go back to reference Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy 27(1):193–232CrossRef Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy 27(1):193–232CrossRef
go back to reference Le Quéré C, Peters GP, Andres RJ et al (2013) Global carbon budget 2013. Earth Syst Sci Data Discuss 6(2):689–760CrossRef Le Quéré C, Peters GP, Andres RJ et al (2013) Global carbon budget 2013. Earth Syst Sci Data Discuss 6(2):689–760CrossRef
go back to reference Liu W, Zhang HB, Zhou QS, Peng ZH, Qi TG, Li XB, Liu GH (2011) Reaction of tricalcium aluminate hexahydrate (C3AH6) with carbon dioxide. J Cent South Univ Sci Technol 42(3):595–599 Liu W, Zhang HB, Zhou QS, Peng ZH, Qi TG, Li XB, Liu GH (2011) Reaction of tricalcium aluminate hexahydrate (C3AH6) with carbon dioxide. J Cent South Univ Sci Technol 42(3):595–599
go back to reference Liu HJ, Hou ZM, Li XC, Wei N, Tan X, Were P (2015a) A preliminary site selection system for CO2-AGES project and its application in China. Environ Earth Sci. doi:10.1007/s12665-015-4249-2 Liu HJ, Hou ZM, Li XC, Wei N, Tan X, Were P (2015a) A preliminary site selection system for CO2-AGES project and its application in China. Environ Earth Sci. doi:10.​1007/​s12665-015-4249-2
go back to reference Liu HJ, Hou ZM, Were P, Sun XL, Gou Y (2015b) Numerical studies on CO2 injection—brine extraction process in a low-medium temperature reservoir system. Environ Earth Sci. doi:10.1007/s12665-015-4086-3 Liu HJ, Hou ZM, Were P, Sun XL, Gou Y (2015b) Numerical studies on CO2 injection—brine extraction process in a low-medium temperature reservoir system. Environ Earth Sci. doi:10.​1007/​s12665-015-4086-3
go back to reference Ma HW, Bai ZM, Yang J et al (2005) Preparation of potassium carbonate from insoluble potash ores: with 13X molecular sieve as a byproduct. Earth Sci Front 12(1):137–155 Ma HW, Bai ZM, Yang J et al (2005) Preparation of potassium carbonate from insoluble potash ores: with 13X molecular sieve as a byproduct. Earth Sci Front 12(1):137–155
go back to reference Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14):1627–1645CrossRef Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14):1627–1645CrossRef
go back to reference Munz IA, Brandvoll Ø, Haug TA et al (2012) Mechanisms and rates of plagioclase carbonation reactions. Geochim Cosmochim Acta 77:27–51CrossRef Munz IA, Brandvoll Ø, Haug TA et al (2012) Mechanisms and rates of plagioclase carbonation reactions. Geochim Cosmochim Acta 77:27–51CrossRef
go back to reference O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Process 19(2):95–101 O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Process 19(2):95–101
go back to reference Peng QJ, Peng LB, Zou XY, Huang C (2003) Study on the extracting potassium from potash feldspar ores with calcium chloride. J Jishou Univ 17(2):185–189 Peng QJ, Peng LB, Zou XY, Huang C (2003) Study on the extracting potassium from potash feldspar ores with calcium chloride. J Jishou Univ 17(2):185–189
go back to reference Qi ZY, Duan SQ et al (2012) Production and supply of potash fertilizer in China in the recent years and its development forecast. Phosphate Compd Fertil 27(6):1–3 Qi ZY, Duan SQ et al (2012) Production and supply of potash fertilizer in China in the recent years and its development forecast. Phosphate Compd Fertil 27(6):1–3
go back to reference Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel-wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46(1):103–107CrossRef Santos A, Toledo-Fernandez JA, Mendoza-Serna R et al (2007) Chemically active silica aerogel-wollastonite composites for CO2 fixation by carbonation reactions. Ind Eng Chem Res 46(1):103–107CrossRef
go back to reference Stocker TF, Qin D, Plattner GK, et al (2013) IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA Stocker TF, Qin D, Plattner GK, et al (2013) IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, USA
go back to reference Tai CY, Chen WR, Shih SM (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52(1):292–299CrossRef Tai CY, Chen WR, Shih SM (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52(1):292–299CrossRef
go back to reference Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G (2000) Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water + carbon dioxide, from molecular simulation. Fluid Ph Equilib 170(2):203–234CrossRef Vorholz J, Harismiadis VI, Rumpf B, Panagiotopoulos AZ, Maurer G (2000) Vapor + liquid equilibrium of water, carbon dioxide, and the binary system, water + carbon dioxide, from molecular simulation. Fluid Ph Equilib 170(2):203–234CrossRef
go back to reference Wang C, Yue HR, Li C et al (2014) Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind Eng Chem Res 53:7971–7978CrossRef Wang C, Yue HR, Li C et al (2014) Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind Eng Chem Res 53:7971–7978CrossRef
go back to reference Xie HP, Wang YF et al (2011, 2012) The production of Rich potassium solution and CO2 mineralization. Chinese Patent no 102491795B, 102701798B, 102701253B Xie HP, Wang YF et al (2011, 2012) The production of Rich potassium solution and CO2 mineralization. Chinese Patent no 102491795B, 102701798B, 102701253B
go back to reference Xie HP, Liang B, Li C et al (2013) The production of potassium chloride and CO2 fixation. Chinese Patent application number 201310558115.8 Xie HP, Liang B, Li C et al (2013) The production of potassium chloride and CO2 fixation. Chinese Patent application number 201310558115.8
go back to reference Xie HP, Wang YF, Ju Y et al (2013b) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58(1):128–132CrossRef Xie HP, Wang YF, Ju Y et al (2013b) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58(1):128–132CrossRef
go back to reference Xu J, Zhang JY, Pan X, Zheng CG (2006) Carbon dioxide sequestration as mineral carbonates. Chin J Chem Eng 57(10):2455–2458 Xu J, Zhang JY, Pan X, Zheng CG (2006) Carbon dioxide sequestration as mineral carbonates. Chin J Chem Eng 57(10):2455–2458
go back to reference Yang H, Prewitt CT (1999) On the crystal structure of pseudowollastonite (CaSiO3). Am Miner 84:929–932 Yang H, Prewitt CT (1999) On the crystal structure of pseudowollastonite (CaSiO3). Am Miner 84:929–932
go back to reference Ye LP, Yue HR, Wang YF et al (2014) CO2 mineralization of activated K-feldspar + CaCl2 slag to fix carbon and produce soluble potash salt. Ind Eng Chem Res 53:10565–10577 Ye LP, Yue HR, Wang YF et al (2014) CO2 mineralization of activated K-feldspar + CaCl2 slag to fix carbon and produce soluble potash salt. Ind Eng Chem Res 53:10565–10577
go back to reference Zhao HQ, Ma HL, J M et al (2003) Study of comprehensive utilization of potassium feldspar soda-lime sintering process. Nonmet Mines 26(1):24–29 Zhao HQ, Ma HL, J M et al (2003) Study of comprehensive utilization of potassium feldspar soda-lime sintering process. Nonmet Mines 26(1):24–29
Metadata
Title
Aqueous carbonation of the potassium-depleted residue from potassium feldspar–CaCl2 calcination for CO2 fixation
Authors
Haoyi Sheng
Li Lv
Bin Liang
Chun Li
Bo Yuan
Longpo Ye
Hairong Yue
Changjun Liu
Yufei Wang
Jiahua Zhu
Heping Xie
Publication date
01-06-2015
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 11/2015
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4412-9

Other articles of this Issue 11/2015

Environmental Earth Sciences 11/2015 Go to the issue