Skip to main content
Top

2017 | OriginalPaper | Chapter

8. Architecture Considerations for Millimeter-Wave Power Amplifiers

Authors : Jaco du Preez, Saurabh Sinha

Published in: Millimeter-Wave Power Amplifiers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tackling the challenges of emerging mm-wave wireless standards inevitably requires designers to reconsider techniques and implementations that were developed for RF and microwave systems. The trend towards adaptive PA systems has resulted in numerous techniques that allow systems to monitor their own performance at a given time and adjust certain parameters to maintain optimal performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cripps, S.C.: RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Inc., Dedham (2006) Cripps, S.C.: RF Power Amplifiers for Wireless Communications, 2nd edn. Artech House, Inc., Dedham (2006)
2.
go back to reference Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popović, Z.B., Pothecary, N., Sevic, J.F., Sokal, N.O.: Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech. 50(3), 814–826 (2002) Raab, F.H., Asbeck, P., Cripps, S., Kenington, P.B., Popović, Z.B., Pothecary, N., Sevic, J.F., Sokal, N.O.: Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Tech. 50(3), 814–826 (2002)
3.
go back to reference Gonzalez, G.: Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice Hall, Upper Saddle River (1996) Gonzalez, G.: Microwave Transistor Amplifiers: Analysis and Design, 2nd edn. Prentice Hall, Upper Saddle River (1996)
4.
go back to reference Neamen, D.A.: Microelectronics: Circuit Analysis and Design, 4th edn. McGraw-Hill, New York City (2010) Neamen, D.A.: Microelectronics: Circuit Analysis and Design, 4th edn. McGraw-Hill, New York City (2010)
5.
go back to reference Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York City (2003) Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York City (2003)
6.
go back to reference Koo, B., Na, Y., Hong, S.: Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement. IEEE Trans. Microw. Theory Tech. 60(2), 340–351 (2012) Koo, B., Na, Y., Hong, S.: Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement. IEEE Trans. Microw. Theory Tech. 60(2), 340–351 (2012)
7.
go back to reference Lee, K., Eo, Y.: High efficiency 5 GHz CMOS power amplifier with adaptive bias control circuit. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 575–578 (2004) Lee, K., Eo, Y.: High efficiency 5 GHz CMOS power amplifier with adaptive bias control circuit. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest, pp. 575–578 (2004)
8.
go back to reference Leung, V.W., Deng, J., Gudem, P.S., Larson, L.E.: Analysis of envelope signal injection for improvement of RF amplifier intermodulation distortion. IEEE J. Solid-State Circuits 40(9), 1888–1894 (2005) Leung, V.W., Deng, J., Gudem, P.S., Larson, L.E.: Analysis of envelope signal injection for improvement of RF amplifier intermodulation distortion. IEEE J. Solid-State Circuits 40(9), 1888–1894 (2005)
9.
go back to reference Bulja, S., Mirshekar-Syahkal, D.: Combined low frequency and third harmonic injection in power amplifier linearization. IEEE Microw. Wirel. Components Lett. 19(9), 584–586 (2009) Bulja, S., Mirshekar-Syahkal, D.: Combined low frequency and third harmonic injection in power amplifier linearization. IEEE Microw. Wirel. Components Lett. 19(9), 584–586 (2009)
10.
go back to reference Serhan, A., Lauga-Larroze, E., Fournier, J.-M.: Efficiency enhancement using adaptive bias control for 60 GHz power amplifier. In: IEEE 13th International New Circuits and Systems Conference (NEWCAS), pp. 1–4 (2015) Serhan, A., Lauga-Larroze, E., Fournier, J.-M.: Efficiency enhancement using adaptive bias control for 60 GHz power amplifier. In: IEEE 13th International New Circuits and Systems Conference (NEWCAS), pp. 1–4 (2015)
11.
go back to reference Kazimierczuk, M.K.: RF Power Amplifiers. Wiley, West Sussex (2008) Kazimierczuk, M.K.: RF Power Amplifiers. Wiley, West Sussex (2008)
12.
go back to reference Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2009) Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2009)
13.
go back to reference Kaymaksut, E., Zhao, D., Reynaert, P.: Transformer-based Doherty power amplifiers for mm-wave applications in 40-nm CMOS. IEEE Trans. Microw. Theory Tech. 63(4), 1186–1192 (2015) Kaymaksut, E., Zhao, D., Reynaert, P.: Transformer-based Doherty power amplifiers for mm-wave applications in 40-nm CMOS. IEEE Trans. Microw. Theory Tech. 63(4), 1186–1192 (2015)
14.
go back to reference Taur, Y., Buchanan, D.A., Chen, W., Frank, D.J., Ismail, K.E., Shih-Hsien, L.O., Sai-Halasz, G.A., Viswanathan, R.G., Wann, H.J.C., Wind, S.J., Wong, H.S.: CMOS scaling into the nanometer regime. Proc. IEEE 85(4), 486–503 (1997) Taur, Y., Buchanan, D.A., Chen, W., Frank, D.J., Ismail, K.E., Shih-Hsien, L.O., Sai-Halasz, G.A., Viswanathan, R.G., Wann, H.J.C., Wind, S.J., Wong, H.S.: CMOS scaling into the nanometer regime. Proc. IEEE 85(4), 486–503 (1997)
15.
go back to reference Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–287 (2001) Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–287 (2001)
16.
go back to reference Poulain, L., Waldhoff, N., Gloria, D., Danneville, F., Dambrine, G.: Small signal and HF noise performance of 45 nm CMOS technology in mmW range. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, pp. 4–7, (2011) Poulain, L., Waldhoff, N., Gloria, D., Danneville, F., Dambrine, G.: Small signal and HF noise performance of 45 nm CMOS technology in mmW range. In: Digest of PapersIEEE Radio Frequency Integrated Circuits Symposium, pp. 4–7, (2011)
17.
go back to reference Agah, A., Dabag, H.T., Hanafi, B., Asbeck, P.M., Buckwalter, J.F., Larson, L.E.: Active millimeter-wave phase-shift Doherty power amplifier in 45-nm SOI CMOS. IEEE J. Solid-State Circuits 48(10), 2338–2350 (2013) Agah, A., Dabag, H.T., Hanafi, B., Asbeck, P.M., Buckwalter, J.F., Larson, L.E.: Active millimeter-wave phase-shift Doherty power amplifier in 45-nm SOI CMOS. IEEE J. Solid-State Circuits 48(10), 2338–2350 (2013)
18.
go back to reference Shi, J., Kang, K., Xiong, Y.Z., Brinkhoff, J., Lin, F., Yuan, X.J.: Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Lett. 31(10), 1080–1082 (2010) Shi, J., Kang, K., Xiong, Y.Z., Brinkhoff, J., Lin, F., Yuan, X.J.: Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Lett. 31(10), 1080–1082 (2010)
19.
go back to reference Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–154 (2005) Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–154 (2005)
20.
go back to reference Jia, H., Chi, B., Kuang, L., Yu, X., Chen, L., Zhu, W., Wei, M., Song, Z., Wang, Z.: Research on CMOS mm-wave circuits and systems for wireless communications. China Commun. 12(5), 1–13 (2015) Jia, H., Chi, B., Kuang, L., Yu, X., Chen, L., Zhu, W., Wei, M., Song, Z., Wang, Z.: Research on CMOS mm-wave circuits and systems for wireless communications. China Commun. 12(5), 1–13 (2015)
21.
go back to reference Ghim, J.G., Cho, K.J., Kim, J.H., Stapleton, S.P.: A high gain Doherty amplifier using embedded drivers. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1838–1841 (2006) Ghim, J.G., Cho, K.J., Kim, J.H., Stapleton, S.P.: A high gain Doherty amplifier using embedded drivers. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1838–1841 (2006)
22.
go back to reference Braithwaite, R.N., Carichner, S.: An improved Doherty amplifier using cascaded digital predistortion and digital gate voltage enhancement. IEEE Trans. Microw. Theory Tech. 57(12), 3118–3126 (2009) Braithwaite, R.N., Carichner, S.: An improved Doherty amplifier using cascaded digital predistortion and digital gate voltage enhancement. IEEE Trans. Microw. Theory Tech. 57(12), 3118–3126 (2009)
23.
go back to reference Cho, K.J., Kim, J.H., Stapleton, S.P.: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications. IEEE Trans. Microw. Theory Tech. 53(1), 292–300 (2005) Cho, K.J., Kim, J.H., Stapleton, S.P.: A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications. IEEE Trans. Microw. Theory Tech. 53(1), 292–300 (2005)
24.
go back to reference Zhao, Y.Z.Y., Iwamoto, M., Larson, L.E., Asbeck, P.M.: Doherty amplifier with DSP control to improve performance in CDMA operation. In: IEEE International Microwave Symposium Digest, vol. 2, pp. 687–690 (2003) Zhao, Y.Z.Y., Iwamoto, M., Larson, L.E., Asbeck, P.M.: Doherty amplifier with DSP control to improve performance in CDMA operation. In: IEEE International Microwave Symposium Digest, vol. 2, pp. 687–690 (2003)
25.
go back to reference Bhat, R., Chakrabarti, A., Krishnaswamy, H.: Large-scale power combining and mixed-signal linearizing architectures for watt-class mmWave CMOS power amplifiers. IEEE Trans. Microw. Theory Tech. 63(2), 703–718 (2015) Bhat, R., Chakrabarti, A., Krishnaswamy, H.: Large-scale power combining and mixed-signal linearizing architectures for watt-class mmWave CMOS power amplifiers. IEEE Trans. Microw. Theory Tech. 63(2), 703–718 (2015)
26.
go back to reference Russell, K.J.: Microwave power combining techniques. IEEE Trans. Microw. Theory Tech. 27, 472–478 (1979) Russell, K.J.: Microwave power combining techniques. IEEE Trans. Microw. Theory Tech. 27, 472–478 (1979)
27.
go back to reference Mader, T.B., Bryerton, E.W., Markovic, M., Forman, M., Popovic, Z.: Switched-mode high-efficiency microwave power amplifiers in a free-space power-combiner array. IEEE Trans. Microw. Theory Tech. 46(10, PART 1), 1391–1398 (1998) Mader, T.B., Bryerton, E.W., Markovic, M., Forman, M., Popovic, Z.: Switched-mode high-efficiency microwave power amplifiers in a free-space power-combiner array. IEEE Trans. Microw. Theory Tech. 46(10, PART 1), 1391–1398 (1998)
28.
go back to reference Hashemi, H., Raman, S. (eds.): mm-Wave Silicon Power Amplifiers and Transmitters. Cambridge University Press, Cambridge (2016) Hashemi, H., Raman, S. (eds.): mm-Wave Silicon Power Amplifiers and Transmitters. Cambridge University Press, Cambridge (2016)
29.
go back to reference Bhat, R., Chakrabarti, A., Krishnaswamy, H.: Large-scale power-combining and linearization in watt-class mmWave CMOS power amplifiers. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, pp. 283–286 (2013) Bhat, R., Chakrabarti, A., Krishnaswamy, H.: Large-scale power-combining and linearization in watt-class mmWave CMOS power amplifiers. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, pp. 283–286 (2013)
30.
go back to reference Chang, Kai, Sun, Cheng: Millimeter-wave power-combining techniques. IEEE Trans. Microw. Theory Tech. 31(2), 91–107 (1983) Chang, Kai, Sun, Cheng: Millimeter-wave power-combining techniques. IEEE Trans. Microw. Theory Tech. 31(2), 91–107 (1983)
31.
go back to reference Brehm, G.E.: Trends in microwave/millimeter-wave front-end technology. In: 1st European Microwave Integrated Circuits Conference (IEEE Cat. No. 06EX1410), September, p. 4 pp.|CD-pp.ROM (2006) Brehm, G.E.: Trends in microwave/millimeter-wave front-end technology. In: 1st European Microwave Integrated Circuits Conference (IEEE Cat. No. 06EX1410), September, p. 4 pp.|CD-pp.ROM (2006)
32.
go back to reference Wu, K., Lai, K., Hu, R., Jou, C.F., Niu, D., Shiao, Y.: 77–110 GHz 65-nm CMOS power amplifier design. IEEE Trans. Terahertz Sci. Technol. 4(3), 391–399 (2014) Wu, K., Lai, K., Hu, R., Jou, C.F., Niu, D., Shiao, Y.: 77–110 GHz 65-nm CMOS power amplifier design. IEEE Trans. Terahertz Sci. Technol. 4(3), 391–399 (2014)
33.
go back to reference Amplifiers, P.P., Wang, H., Lai, R., Biedenbender, M., Dow, G.S., Allen, B.R.: Novel W-band monolithic push-pull amplifiers. IEEE J. Solid-State Circuits 30(10), 1055–1061 (1995) Amplifiers, P.P., Wang, H., Lai, R., Biedenbender, M., Dow, G.S., Allen, B.R.: Novel W-band monolithic push-pull amplifiers. IEEE J. Solid-State Circuits 30(10), 1055–1061 (1995)
34.
go back to reference Pfeiffer, U.R., Goren, D., Floyd, B.A., Reynolds, S.K.: SiGe transformer matched power amplifier for operation at millimeter-wave frequencies. In: 31st European Solid-State Circuits Conference, pp. 141–144 (2005) Pfeiffer, U.R., Goren, D., Floyd, B.A., Reynolds, S.K.: SiGe transformer matched power amplifier for operation at millimeter-wave frequencies. In: 31st European Solid-State Circuits Conference, pp. 141–144 (2005)
35.
go back to reference Ta, T.T., Matsuzaki, K., Ando, K., Gomyo, K., Nakayama, E., Tanifuji, S., Kameda, S., Suematsu, N., Takagi, T., and Tsubouchi, K.: A high efficiency Si-CMOS power amplifier for 60 GHz band broadband wireless communication employing optimized transistor size,” in Proceedings of the 41st European Micorwave Conference, 2011, pp. 151–154 Ta, T.T., Matsuzaki, K., Ando, K., Gomyo, K., Nakayama, E., Tanifuji, S., Kameda, S., Suematsu, N., Takagi, T., and Tsubouchi, K.: A high efficiency Si-CMOS power amplifier for 60 GHz band broadband wireless communication employing optimized transistor size,” in Proceedings of the 41st European Micorwave Conference, 2011, pp. 151–154
36.
go back to reference Aoki, I., Member, S., Kee, S.D., Rutledge, D.B., Hajimiri, A.: Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. Design 37(3), 371–383 (2002) Aoki, I., Member, S., Kee, S.D., Rutledge, D.B., Hajimiri, A.: Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. Design 37(3), 371–383 (2002)
37.
go back to reference Dickson, T.O., LaCroix, M.A., Boret, S., Gloria, D., Beerkens, R., Voinigescu, S.P.: 30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. Microw. Theory Tech. 53(1), 123–132 (2005) Dickson, T.O., LaCroix, M.A., Boret, S., Gloria, D., Beerkens, R., Voinigescu, S.P.: 30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits. IEEE Trans. Microw. Theory Tech. 53(1), 123–132 (2005)
38.
go back to reference LaRocca, T., Liu, J.Y.C., Chang, M.C.F.: 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid-State Circuits 44(5), 1425–1435 (2009) LaRocca, T., Liu, J.Y.C., Chang, M.C.F.: 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid-State Circuits 44(5), 1425–1435 (2009)
39.
go back to reference Asbeck, P., Larson, L., Kimball, D., Pornpromlikit, S., Jeong, J.H., Presti, C., Hung, T.P., Wang, F., Zhao, Y.: Design options for high efficiency linear handset power amplifiers. In: 2009 9th Topical Meeting on Silicon Monolithic Integrated Circuits in RF System, SiRF’09—Digest of Papers, pp. 233–236 (2009) Asbeck, P., Larson, L., Kimball, D., Pornpromlikit, S., Jeong, J.H., Presti, C., Hung, T.P., Wang, F., Zhao, Y.: Design options for high efficiency linear handset power amplifiers. In: 2009 9th Topical Meeting on Silicon Monolithic Integrated Circuits in RF System, SiRF’09—Digest of Papers, pp. 233–236 (2009)
40.
go back to reference Chireix, H.: High power outphasing modulation. Proc. IRE 23(11), 1370–1392 (1935) Chireix, H.: High power outphasing modulation. Proc. IRE 23(11), 1370–1392 (1935)
41.
go back to reference Dabag, H.T., Hanafi, B., Gurbuz, O.D., Rebeiz, G.M., Buckwalter, J.F., Asbeck, P.M.: Transmission of signals with complex constellations using millimeter-wave spatially power-combined CMOS power amplifiers and digital predistortion. IEEE Trans. Microw. Theory Tech. 63(7), 2364–2374 (2015) Dabag, H.T., Hanafi, B., Gurbuz, O.D., Rebeiz, G.M., Buckwalter, J.F., Asbeck, P.M.: Transmission of signals with complex constellations using millimeter-wave spatially power-combined CMOS power amplifiers and digital predistortion. IEEE Trans. Microw. Theory Tech. 63(7), 2364–2374 (2015)
42.
go back to reference Shahramian, S., Baeyens, Y., Kaneda, N., Chen, Y.K.: A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE J. Solid-State Circuits 48(5), 1113–1125 (2013) Shahramian, S., Baeyens, Y., Kaneda, N., Chen, Y.K.: A 70–100 GHz direct-conversion transmitter and receiver phased array chipset demonstrating 10 Gb/s wireless link. IEEE J. Solid-State Circuits 48(5), 1113–1125 (2013)
43.
go back to reference Sarmah, N., Grzyb, J., Statnikov, K., Malz, S., Rodriguez Vazquez, P., Föerster, W., Heinemann, B., Pfeiffer, U.R.: A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans. Microw. Theory Tech. 64(2), 562–574 (2016) Sarmah, N., Grzyb, J., Statnikov, K., Malz, S., Rodriguez Vazquez, P., Föerster, W., Heinemann, B., Pfeiffer, U.R.: A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans. Microw. Theory Tech. 64(2), 562–574 (2016)
44.
go back to reference Sandström, D., Varonen, M., Kärkkäinen, M., Halonen, K.A.I.: W-Band CMOS amplifiers achieving +10 dBm saturated output power and 7.5 dB NF. IEEE J. Solid-State Circuits 44(12), 3403–3409 (2009) Sandström, D., Varonen, M., Kärkkäinen, M., Halonen, K.A.I.: W-Band CMOS amplifiers achieving +10 dBm saturated output power and 7.5 dB NF. IEEE J. Solid-State Circuits 44(12), 3403–3409 (2009)
45.
go back to reference Park, J.D., Kang, S., Thyagarajan, S.V., Alon, E., Niknejad, A.M.: A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. In: IEEE Symposium VLSI Circuits, Digest of Technical Papers, vol. 2, pp. 48–49 (2012) Park, J.D., Kang, S., Thyagarajan, S.V., Alon, E., Niknejad, A.M.: A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. In: IEEE Symposium VLSI Circuits, Digest of Technical Papers, vol. 2, pp. 48–49 (2012)
46.
go back to reference Yao, T., Gordon, M.Q., Tang, K.K.W., Yau, K.H.K., Yang, M.T., Schvan, P., Voinigescu, S.P.: Algorithmic design of CMOS LNAs and PAs For 60-GHz radio. IEEE J. Solid-State Circuits 42(5), 1044–1056 (2007) Yao, T., Gordon, M.Q., Tang, K.K.W., Yau, K.H.K., Yang, M.T., Schvan, P., Voinigescu, S.P.: Algorithmic design of CMOS LNAs and PAs For 60-GHz radio. IEEE J. Solid-State Circuits 42(5), 1044–1056 (2007)
47.
go back to reference Zhao, D., Kulkarni, S., Reynaert, P.: A 60-GHz outphasing transmitter in 40-nm CMOS. IEEE J. Solid-State Circuits 47(12), 3172–3183 (2012) Zhao, D., Kulkarni, S., Reynaert, P.: A 60-GHz outphasing transmitter in 40-nm CMOS. IEEE J. Solid-State Circuits 47(12), 3172–3183 (2012)
48.
go back to reference Reynaert, P., Zhao, D.: Efficiency enhancement techniques for mm-Wave CMOS PAs : a tutorial. In: IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1–3 (2016) Reynaert, P., Zhao, D.: Efficiency enhancement techniques for mm-Wave CMOS PAs : a tutorial. In: IEEE International Symposium on Radio-Frequency Integration Technology, pp. 1–3 (2016)
49.
go back to reference Li, Y., Li, Z., Uyar, O., Avniel, Y., Megretski, A., Stojanovic, V.: High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers. IEEE J. Solid-State Circuits 48(2), 369–380 (2013) Li, Y., Li, Z., Uyar, O., Avniel, Y., Megretski, A., Stojanovic, V.: High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers. IEEE J. Solid-State Circuits 48(2), 369–380 (2013)
50.
go back to reference Shi, B., Sundström, L.: A translinear-based chip for linear LINC transmitters. In: Symposium of VLSI Circuits, pp. 58–61 (2000) Shi, B., Sundström, L.: A translinear-based chip for linear LINC transmitters. In: Symposium of VLSI Circuits, pp. 58–61 (2000)
51.
go back to reference Shi, B., Sundstrom, L.: A novel design using translinear circuit for linear LINC transmitters. In: IEEE International Symposium on Circuits and Systems—Emerging Technologies for the 21st Century, vol. 1, pp. 64–67 (2000) Shi, B., Sundstrom, L.: A novel design using translinear circuit for linear LINC transmitters. In: IEEE International Symposium on Circuits and Systems—Emerging Technologies for the 21st Century, vol. 1, pp. 64–67 (2000)
52.
go back to reference Shi, B., Sundström, L.: A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters. IEEE J. Solid-State Circuits 35(7), 987–993 (2000) Shi, B., Sundström, L.: A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters. IEEE J. Solid-State Circuits 35(7), 987–993 (2000)
53.
go back to reference Panseri, L., Romanò, L., Levantino, S., Samori, C., Lacaita, A.L.: Low-power signal component separator for a 64-QAM 802.11 LINC transmitter. IEEE J. Solid-State Circuits 43(5), 1274–1285 (2008) Panseri, L., Romanò, L., Levantino, S., Samori, C., Lacaita, A.L.: Low-power signal component separator for a 64-QAM 802.11 LINC transmitter. IEEE J. Solid-State Circuits 43(5), 1274–1285 (2008)
54.
go back to reference Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60(6, PART 2), 1764–1783 (2012) Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60(6, PART 2), 1764–1783 (2012)
55.
go back to reference Fritzin, J., Jung, Y., Landin, P.N., Handel, P., Enqvist, M., Alvandpour, A.: Phase predistortion of a class-D outphasing RF amplifier in 90 nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 58(10), 642–646 (2011) Fritzin, J., Jung, Y., Landin, P.N., Handel, P., Enqvist, M., Alvandpour, A.: Phase predistortion of a class-D outphasing RF amplifier in 90 nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 58(10), 642–646 (2011)
56.
go back to reference Chung, S., Godoy, P.A., Barton, T.W., Huang, E.W., Perreault, D.J., Dawson, J.L.: Asymmetric multilevel outphasing architecture for multi-standard transmitters. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, vol. 2, pp. 237–240 (2009) Chung, S., Godoy, P.A., Barton, T.W., Huang, E.W., Perreault, D.J., Dawson, J.L.: Asymmetric multilevel outphasing architecture for multi-standard transmitters. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, vol. 2, pp. 237–240 (2009)
57.
go back to reference Hall, P.S., Vetterlein, S.J.: “Review of radio frequency beamforming techniques for scanned and multiple beam antennas”, IEE Proc. H Microwaves, Antennas Propag. 137(5), 293 (1990) Hall, P.S., Vetterlein, S.J.: “Review of radio frequency beamforming techniques for scanned and multiple beam antennas”, IEE Proc. H Microwaves, Antennas Propag. 137(5), 293 (1990)
58.
go back to reference Liang, C., Razavi, B.: Transmitter linearization by beamforming. IEEE J. Solid-State Circuits 46(9), 1956–1969 (2011) Liang, C., Razavi, B.: Transmitter linearization by beamforming. IEEE J. Solid-State Circuits 46(9), 1956–1969 (2011)
59.
go back to reference Raab, F.H.: Intermodulation distortion in Kahn-technique transmitters. IEEE Trans. Microw. Theory Tech. 44(12, PART 1), 2273–2278 (1996) Raab, F.H.: Intermodulation distortion in Kahn-technique transmitters. IEEE Trans. Microw. Theory Tech. 44(12, PART 1), 2273–2278 (1996)
60.
go back to reference Raab, F.H., Mountain, G.: Drive modulation in Kahn-technique transmitters. In: IEEE MTT-S International Microwave Symposium Digest, pp. 811–814 (1999) Raab, F.H., Mountain, G.: Drive modulation in Kahn-technique transmitters. In: IEEE MTT-S International Microwave Symposium Digest, pp. 811–814 (1999)
61.
go back to reference Staszewski, R.B., Wallberg, J.L., Rezeq, S., Hung, C.M., Eliezer, O.E., Vemulapalli, S.K., Fernando, C., Maggio, K., Staszewski, R., Barton, N., Lee, M.C., Cruise, P., Entezari, M., Muhammad, K., Leipold, D.: All-digital PLL and transmitter for mobile phones. IEEE J. Solid-State Circuits 40(12), 2469–2480 (2005) Staszewski, R.B., Wallberg, J.L., Rezeq, S., Hung, C.M., Eliezer, O.E., Vemulapalli, S.K., Fernando, C., Maggio, K., Staszewski, R., Barton, N., Lee, M.C., Cruise, P., Entezari, M., Muhammad, K., Leipold, D.: All-digital PLL and transmitter for mobile phones. IEEE J. Solid-State Circuits 40(12), 2469–2480 (2005)
62.
go back to reference Staszewski, R.B., Wallberg, J., Rezeq, S., Eliezer, O., Vemulapalli, S., Staszewski, R., Barton, N., Cruise, P., Entezari, M., Muhammad, K., Leipold, D.: All-digital PLL and GSM/edge transmitter in 90 nm CMOS. IEEE Solid-State Circuits Conference (ISSCC) 51(11), 316–318 (2005) Staszewski, R.B., Wallberg, J., Rezeq, S., Eliezer, O., Vemulapalli, S., Staszewski, R., Barton, N., Cruise, P., Entezari, M., Muhammad, K., Leipold, D.: All-digital PLL and GSM/edge transmitter in 90 nm CMOS. IEEE Solid-State Circuits Conference (ISSCC) 51(11), 316–318 (2005)
63.
go back to reference Wang, F., Kimball, D.F., Popp, J.D., Yang, A.H., Lie, D.Y., Asbeck, P.M., Larson, L.E.: An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications. IEEE Trans. Microw. Theory Tech. 54(12), 4086–4098 (2006) Wang, F., Kimball, D.F., Popp, J.D., Yang, A.H., Lie, D.Y., Asbeck, P.M., Larson, L.E.: An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11 g WLAN applications. IEEE Trans. Microw. Theory Tech. 54(12), 4086–4098 (2006)
64.
go back to reference Kavousian, A., Su, D.K., Hekmat, M., Shirvani, A., Wooley, B.A.: A digitally modulated polar CMOS power amplifier with a 20-MHz channel bandwidth. IEEE J. Solid-State Circuits 43(10), 2251–2258 (2008) Kavousian, A., Su, D.K., Hekmat, M., Shirvani, A., Wooley, B.A.: A digitally modulated polar CMOS power amplifier with a 20-MHz channel bandwidth. IEEE J. Solid-State Circuits 43(10), 2251–2258 (2008)
65.
go back to reference Choi, J., Yim, J., Yang, J., Kim, J., Cha, J., Kang, D., Kim, D., Kim, B.: A sigma-delta-digitized polar RF transmitter. IEEE Trans. Microw. Theory Tech. 55(12), 2679–2690 (2007) Choi, J., Yim, J., Yang, J., Kim, J., Cha, J., Kang, D., Kim, D., Kim, B.: A sigma-delta-digitized polar RF transmitter. IEEE Trans. Microw. Theory Tech. 55(12), 2679–2690 (2007)
66.
go back to reference Chowdhury, D., Ye, L., Alon, E., Niknejad, A.M.: An efficient mixed-signal 2.4-GHz polar power amplifier in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46(8), 1796–1809 (2011) Chowdhury, D., Ye, L., Alon, E., Niknejad, A.M.: An efficient mixed-signal 2.4-GHz polar power amplifier in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46(8), 1796–1809 (2011)
67.
go back to reference Marcu, C., Chowdhury, D., Thakkar, C., Park, J.D., Kong, L.K., Tabesh, M., Wang, Y., Afshar, B., Gupta, A., Arbabian, A., Gambini, S., Zamani, R., Alon, E., Niknejad, A.M.: A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry. IEEE J. Solid-State Circuits 44(12), 3434–3447 (2009) Marcu, C., Chowdhury, D., Thakkar, C., Park, J.D., Kong, L.K., Tabesh, M., Wang, Y., Afshar, B., Gupta, A., Arbabian, A., Gambini, S., Zamani, R., Alon, E., Niknejad, A.M.: A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry. IEEE J. Solid-State Circuits 44(12), 3434–3447 (2009)
68.
go back to reference Balteanu, A., Sarkas, I., Dacquay, E., Tomkins, A., Rebeiz, G.M., Asbeck, P.M., Voinigescu, S.P.: A 2-bit, 24 dBm, millimeter-wave SOI CMOS power-DAC cell for watt-level high-efficiency, fully digital m-ary QAM transmitters. IEEE J. Solid-State Circuits 48(5), 1126–1137 (2013) Balteanu, A., Sarkas, I., Dacquay, E., Tomkins, A., Rebeiz, G.M., Asbeck, P.M., Voinigescu, S.P.: A 2-bit, 24 dBm, millimeter-wave SOI CMOS power-DAC cell for watt-level high-efficiency, fully digital m-ary QAM transmitters. IEEE J. Solid-State Circuits 48(5), 1126–1137 (2013)
69.
go back to reference Heydari, B., Bohsali, M., Adabi, E., Niknejad, A.M.: A 60 GHz power amplifier in 90 nm CMOS technology. In: IEEE Custom Integrated Circuits Conference, no. CICC, pp. 769–772 (2007) Heydari, B., Bohsali, M., Adabi, E., Niknejad, A.M.: A 60 GHz power amplifier in 90 nm CMOS technology. In: IEEE Custom Integrated Circuits Conference, no. CICC, pp. 769–772 (2007)
70.
go back to reference Sanchez-Hernandez, D., Robertson, I.: 60 GHz-band active patch antenna for spatial power combining arrays in European mobile communication systems. In: 24th European Microwave Conference, pp. 1773–1778 (1994) Sanchez-Hernandez, D., Robertson, I.: 60 GHz-band active patch antenna for spatial power combining arrays in European mobile communication systems. In: 24th European Microwave Conference, pp. 1773–1778 (1994)
71.
go back to reference Benet, J.A., Perkons, A.R., Wong, S.H., Zaman, A.: Spatial power combining for millimeterwave solid state amplifiers. In: IEEE MTT-S International Microwave Symposium Digest, pp. 619–622 (1993) Benet, J.A., Perkons, A.R., Wong, S.H., Zaman, A.: Spatial power combining for millimeterwave solid state amplifiers. In: IEEE MTT-S International Microwave Symposium Digest, pp. 619–622 (1993)
72.
go back to reference Emrick, R.M., Volakis, J.L.: On chip spatial power combining for short range millimeter-wave systems. In: IEEE Antennas and Propagation Society International Symposium, pp. 1–4 (2008) Emrick, R.M., Volakis, J.L.: On chip spatial power combining for short range millimeter-wave systems. In: IEEE Antennas and Propagation Society International Symposium, pp. 1–4 (2008)
73.
go back to reference Liu, C.-C., Moussounda, R., Rojas, R.G.: A 60-GHz active-integrated antenna oscillator. In: US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1–1 (2013) Liu, C.-C., Moussounda, R., Rojas, R.G.: A 60-GHz active-integrated antenna oscillator. In: US National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1–1 (2013)
74.
go back to reference Mailloux, R.: Phased Array Antenna Handbook, 2nd edn. Artech House, Inc., Norwood (2005) Mailloux, R.: Phased Array Antenna Handbook, 2nd edn. Artech House, Inc., Norwood (2005)
75.
go back to reference Tabesh, M., Chen, J., Marcu, C., Kong, L., Kang, S., Niknejad, A.M., Alon, E.: A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver. IEEE J. Solid-State Circuits 46(12), 3018–3032 (2011) Tabesh, M., Chen, J., Marcu, C., Kong, L., Kang, S., Niknejad, A.M., Alon, E.: A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver. IEEE J. Solid-State Circuits 46(12), 3018–3032 (2011)
76.
go back to reference Valdes-Garcia, A., Nicolson, S.T., Lai, J.W., Natarajan, A., Chen, P.Y., Reynolds, S.K., Zhan, J.H.C., Kam, D.G., Liu, D., Floyd, B.: A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 45(12), 2757–2773 (2010) Valdes-Garcia, A., Nicolson, S.T., Lai, J.W., Natarajan, A., Chen, P.Y., Reynolds, S.K., Zhan, J.H.C., Kam, D.G., Liu, D., Floyd, B.: A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 45(12), 2757–2773 (2010)
77.
go back to reference Natarajan, A., Floyd, B., Hajimiri, A.: A bidirectional RF-combining 60 GHz phased-array front-end. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 202–204 (2007) Natarajan, A., Floyd, B., Hajimiri, A.: A bidirectional RF-combining 60 GHz phased-array front-end. In: IEEE International Solid-State Circuits Conference (ISSCC), pp. 202–204 (2007)
78.
go back to reference Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, Hoboken (2005) Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, Hoboken (2005)
79.
go back to reference Wilkinson, E.J.: An N-way hybrid power divider. IEEE Trans. Microw. Theory Tech. 8(1), 116–118 (1960) Wilkinson, E.J.: An N-way hybrid power divider. IEEE Trans. Microw. Theory Tech. 8(1), 116–118 (1960)
80.
go back to reference May, J.W., Rebeiz, G.M.: A 30–40 GHz 1:16 Internally matched SiGe active power divider for phased array transmitters. In: IEEE Custom Integrated Circuits Conference, pp. 765–768 (2008) May, J.W., Rebeiz, G.M.: A 30–40 GHz 1:16 Internally matched SiGe active power divider for phased array transmitters. In: IEEE Custom Integrated Circuits Conference, pp. 765–768 (2008)
81.
go back to reference May, J.W., Rebeiz, G.M., Koh, K.-J.: A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid-State Circuits 44(5), 1498–1509 (2009) May, J.W., Rebeiz, G.M., Koh, K.-J.: A millimeter-wave (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology. IEEE J. Solid-State Circuits 44(5), 1498–1509 (2009)
82.
go back to reference Valdes-Garcia, A., Nicolson, S., Lai, J., Natarajan, A., Chen, P.Y., Reynolds, S., Zhan, J.H.C., Floyd, B.: A SiGe BiCMOS 16-element phased-array transmitter for 60 GHz communications. In: IEEE Solid-State Circuits Conference (ISSCC), pp. 218–220 (2010) Valdes-Garcia, A., Nicolson, S., Lai, J., Natarajan, A., Chen, P.Y., Reynolds, S., Zhan, J.H.C., Floyd, B.: A SiGe BiCMOS 16-element phased-array transmitter for 60 GHz communications. In: IEEE Solid-State Circuits Conference (ISSCC), pp. 218–220 (2010)
83.
go back to reference Natarajan, A., Komijani, A., Guan, X., Babakhani, A., Hajimiri, A.: A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting. IEEE J. Solid-State Circuits 41(12), 2807–2818 (2006) Natarajan, A., Komijani, A., Guan, X., Babakhani, A., Hajimiri, A.: A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting. IEEE J. Solid-State Circuits 41(12), 2807–2818 (2006)
84.
go back to reference Hajimiri, A., Hashemi, H., Natarajan, A., Guan, X., Komijani, A.: Integrated phased array systems in silicon. Proc. IEEE 93(9), 1637–1654 (2005) Hajimiri, A., Hashemi, H., Natarajan, A., Guan, X., Komijani, A.: Integrated phased array systems in silicon. Proc. IEEE 93(9), 1637–1654 (2005)
85.
go back to reference Chan, W.L., Long, J.R.: A 60 GHz-band 2 × 2 phased-array transmitter in 65 nm CMOS. IEEE J. Solid-State Circuits 45(12), 2682–2695 (2010) Chan, W.L., Long, J.R.: A 60 GHz-band 2 × 2 phased-array transmitter in 65 nm CMOS. IEEE J. Solid-State Circuits 45(12), 2682–2695 (2010)
86.
go back to reference Kishimoto, S., Orihashi, N., Hamada, Y., Ito, M., Maruhashi, K.: A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 215–218 (2009) Kishimoto, S., Orihashi, N., Hamada, Y., Ito, M., Maruhashi, K.: A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 215–218 (2009)
87.
go back to reference Cohen, E., Jakobson, C.G., Ravid, S., Ritter, D.: A Bidirectional TX/RX four-element phased array at 60 GHz With RF-IF conversion block in 90-nm CMOS process. IEEE Trans. Microw. Theory Tech. 58(5), 1438–1446 (2010) Cohen, E., Jakobson, C.G., Ravid, S., Ritter, D.: A Bidirectional TX/RX four-element phased array at 60 GHz With RF-IF conversion block in 90-nm CMOS process. IEEE Trans. Microw. Theory Tech. 58(5), 1438–1446 (2010)
88.
go back to reference Jackson, D.R., Oliner, A.A.: Modern Antenna Handbook. Wiley, New York City (2008) Jackson, D.R., Oliner, A.A.: Modern Antenna Handbook. Wiley, New York City (2008)
89.
go back to reference Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012) Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, Hoboken (2012)
90.
go back to reference Elmala, M.A.I., Embabi, S.H.K.: Calibration of phase and gain mismatches in weaver image-reject receiver. IEEE J. Solid-State Circuits 39(2), 283–289 (2004) Elmala, M.A.I., Embabi, S.H.K.: Calibration of phase and gain mismatches in weaver image-reject receiver. IEEE J. Solid-State Circuits 39(2), 283–289 (2004)
91.
go back to reference Ko, Y., Stapleton, S.P., Sobot, R.: Ku-band image rejection sliding-IF transmitter. IEEE Trans. Microw. Theory Tech. 59(8), 2091–2107 (2011) Ko, Y., Stapleton, S.P., Sobot, R.: Ku-band image rejection sliding-IF transmitter. IEEE Trans. Microw. Theory Tech. 59(8), 2091–2107 (2011)
92.
go back to reference Baykas, T., Sum, C.S., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011) Baykas, T., Sum, C.S., Lan, Z., Wang, J., Rahman, M.A., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011)
93.
go back to reference Natarajan, A., Reynolds, S.K., Tsai, M., Nicolson, S.T., Zhan, J.C., Kam, D.G., Liu, D., Huang, Y.O., Valdes-garcia, A., Floyd, B.A.: A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46(5), 1059–1075 (2011) Natarajan, A., Reynolds, S.K., Tsai, M., Nicolson, S.T., Zhan, J.C., Kam, D.G., Liu, D., Huang, Y.O., Valdes-garcia, A., Floyd, B.A.: A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 46(5), 1059–1075 (2011)
94.
go back to reference Valdes-Garcia, A., Reynolds, S., Beukema, T.: Multi-mode modulator and frequency demodulator circuits for Gb/s data rate 60 GHz wireless transceivers. In: Proceedings of the Custom Integrated Circuits Conference, pp. 639–642 (2008) Valdes-Garcia, A., Reynolds, S., Beukema, T.: Multi-mode modulator and frequency demodulator circuits for Gb/s data rate 60 GHz wireless transceivers. In: Proceedings of the Custom Integrated Circuits Conference, pp. 639–642 (2008)
95.
go back to reference Maas, S.A.: Nonlinear Microwave and RF Circuits, 2nd edn. Artech House, Inc., Norwood, Massachusetts (2003) Maas, S.A.: Nonlinear Microwave and RF Circuits, 2nd edn. Artech House, Inc., Norwood, Massachusetts (2003)
96.
go back to reference Ludwig, R., Gene, B.: RF Circuit Design: Theory and Applications, 2nd edn. Pearson Education, Inc., Upper Saddle River (2009) Ludwig, R., Gene, B.: RF Circuit Design: Theory and Applications, 2nd edn. Pearson Education, Inc., Upper Saddle River (2009)
97.
go back to reference Walker, J. (ed.): Handbook of RF and Microwave Power Amplifiers. Cambridge University Press, Cambridge, United Kingdom (2013) Walker, J. (ed.): Handbook of RF and Microwave Power Amplifiers. Cambridge University Press, Cambridge, United Kingdom (2013)
98.
go back to reference Yazdi, A., Green, M.M.: A 40 GHz differential push-push VCO in 0.18 CMOS for serial communication. IEEE Microw. Wirel. Components Lett. 19(11), 725–727 (2009) Yazdi, A., Green, M.M.: A 40 GHz differential push-push VCO in 0.18 CMOS for serial communication. IEEE Microw. Wirel. Components Lett. 19(11), 725–727 (2009)
99.
go back to reference Hsu, P., Nguyen, C., Kintis, M.: Uniplanar broad-band push-pull FET AMPLIFIERS. IEEE Trans. Microw. Theory Tech. 45(12), 2150–2152 (1997) Hsu, P., Nguyen, C., Kintis, M.: Uniplanar broad-band push-pull FET AMPLIFIERS. IEEE Trans. Microw. Theory Tech. 45(12), 2150–2152 (1997)
100.
go back to reference Ampli, P., Kim, J., Dabag, H., Member, S., Asbeck, P., Buckwalter, J.F.: Q-band and W-band power amplifiers in 45-nm CMOS SOI. IEEE Trans. Microw. Theory Tech. 60(6), 1870–1877 (2012) Ampli, P., Kim, J., Dabag, H., Member, S., Asbeck, P., Buckwalter, J.F.: Q-band and W-band power amplifiers in 45-nm CMOS SOI. IEEE Trans. Microw. Theory Tech. 60(6), 1870–1877 (2012)
101.
go back to reference Jen, Y.N., Tsai, J.H., Huang, T.W., Wang, H.: Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process. IEEE Trans. Microw. Theory Tech. 57(7), 1637–1646 (2009) Jen, Y.N., Tsai, J.H., Huang, T.W., Wang, H.: Design and analysis of a 55–71-GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process. IEEE Trans. Microw. Theory Tech. 57(7), 1637–1646 (2009)
102.
go back to reference Wu, P.S., Wang, C.H., Huang, T.W., Wang, H.: Compact and broad-band millimeter-wave monolithic transformer balanced mixers. IEEE Trans. Microw. Theory Tech. 53(10), 3106–3113 (2005) Wu, P.S., Wang, C.H., Huang, T.W., Wang, H.: Compact and broad-band millimeter-wave monolithic transformer balanced mixers. IEEE Trans. Microw. Theory Tech. 53(10), 3106–3113 (2005)
103.
go back to reference Kuang, L., Chi, B., Jia, H., Jia, W., Wang, Z.: A 60-GHz CMOS dual-mode power amplifier with efficiency enhancement at low output power. IEEE Trans. Circuits Syst. Express Briefs 62(4), 352–356 (2015) Kuang, L., Chi, B., Jia, H., Jia, W., Wang, Z.: A 60-GHz CMOS dual-mode power amplifier with efficiency enhancement at low output power. IEEE Trans. Circuits Syst. Express Briefs 62(4), 352–356 (2015)
104.
go back to reference Bowers, S.M., Sengupta, K., Dasgupta, K., Parker, B.D., Hajimiri, A.: Integrated self-healing for mm-wave power amplifiers. IEEE Trans. Microw. Theory Tech. 61(3), 1301–1315 (2013) Bowers, S.M., Sengupta, K., Dasgupta, K., Parker, B.D., Hajimiri, A.: Integrated self-healing for mm-wave power amplifiers. IEEE Trans. Microw. Theory Tech. 61(3), 1301–1315 (2013)
105.
go back to reference Liu, J.Y.C., Berenguer, R., Chang, M.C.F.: Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 60(5), 1342–1352 (2012) Liu, J.Y.C., Berenguer, R., Chang, M.C.F.: Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 60(5), 1342–1352 (2012)
106.
go back to reference Niknejad, A.M., Hashemi, H.: mm-Wave Silicon Technology: 60 GHz and Beyond. Springer US, New York City (2008) Niknejad, A.M., Hashemi, H.: mm-Wave Silicon Technology: 60 GHz and Beyond. Springer US, New York City (2008)
107.
go back to reference Bowers, S.M., Sengupta, K., Dasgupta, K., Hajimiri, A.: A fully-integrated self-healing power amplifier. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 221–224 (2012) Bowers, S.M., Sengupta, K., Dasgupta, K., Hajimiri, A.: A fully-integrated self-healing power amplifier. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 221–224 (2012)
108.
go back to reference Lee, C.F., Mok, P.K.T.: A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique. IEEE J. Solid-State Circuits 39(1), 3–14 (2004) Lee, C.F., Mok, P.K.T.: A monolithic current-mode CMOS DC–DC converter with on-chip current-sensing technique. IEEE J. Solid-State Circuits 39(1), 3–14 (2004)
109.
go back to reference Tang, A., Hsiao, F., Murphy, D., Ku, I.N., Liu, J., D’Souza, S., Wang, N.Y., Wu, H., Wang, Y.H., Tang, M., Virbila, G., Pham, M., Yang, D., Gu, Q.J., Wu, Y.C., Kuan, Y.C., Chien, C., Chang, M.C.F.: A low-overhead self-healing embedded system for ensuring high yield and long-term sustainability of 60 GHz 4 Gb/s radio-on-a-chip. In: IEEE International Solid-State Circuits Conference (ISSCC), vol. 55, June 2011, pp. 316–317 (2012) Tang, A., Hsiao, F., Murphy, D., Ku, I.N., Liu, J., D’Souza, S., Wang, N.Y., Wu, H., Wang, Y.H., Tang, M., Virbila, G., Pham, M., Yang, D., Gu, Q.J., Wu, Y.C., Kuan, Y.C., Chien, C., Chang, M.C.F.: A low-overhead self-healing embedded system for ensuring high yield and long-term sustainability of 60 GHz 4 Gb/s radio-on-a-chip. In: IEEE International Solid-State Circuits Conference (ISSCC), vol. 55, June 2011, pp. 316–317 (2012)
110.
go back to reference Yin, Q., Eisenstadt, W.R., Fox, R.M., Zhang, T.: A translinear RMS detector for embedded test of RF ICs. IEEE Trans. Instrum. Meas. 54(5), 1708–1714 (2005) Yin, Q., Eisenstadt, W.R., Fox, R.M., Zhang, T.: A translinear RMS detector for embedded test of RF ICs. IEEE Trans. Instrum. Meas. 54(5), 1708–1714 (2005)
111.
go back to reference Valdes-Garcia, A., Venkatasubramanian, R., Silva-Martinez, J., Sánchez-Sinencio, E.: A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans. Instrum. Meas. 57(7), 1470–1477 (2008) Valdes-Garcia, A., Venkatasubramanian, R., Silva-Martinez, J., Sánchez-Sinencio, E.: A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Trans. Instrum. Meas. 57(7), 1470–1477 (2008)
112.
go back to reference De La Cruz-Blas, C.A., López-Martín, A., Carlosena, A., Ramírez-Angulo, J.: 1.5-V current-mode CMOS true RMS-DC converter based on class-AB transconductors. IEEE Trans. Circuits Syst. II Express Briefs 52(7), 376–379 (2005) De La Cruz-Blas, C.A., López-Martín, A., Carlosena, A., Ramírez-Angulo, J.: 1.5-V current-mode CMOS true RMS-DC converter based on class-AB transconductors. IEEE Trans. Circuits Syst. II Express Briefs 52(7), 376–379 (2005)
113.
go back to reference Shahramian, S., Voinigescu, S.P., Carusone, A.C.: A 35-GS/s, 4-bit flash ADC with active data and clock distribution trees. IEEE J. Solid-State Circuits 44(6), 1709–1720 (2009) Shahramian, S., Voinigescu, S.P., Carusone, A.C.: A 35-GS/s, 4-bit flash ADC with active data and clock distribution trees. IEEE J. Solid-State Circuits 44(6), 1709–1720 (2009)
114.
go back to reference Jiang, T., Liu, W., Zhong, F.Y., Zhong, C., Chiang, P.Y.: Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40 nm-CMOS. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2010) Jiang, T., Liu, W., Zhong, F.Y., Zhong, C., Chiang, P.Y.: Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40 nm-CMOS. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2010)
115.
go back to reference Sengupta, K., Dasgupta, K., Bowers, S.M., Hajimiri, A.: On-chip sensing and actuation methods for integrated self-healing mm-wave CMOS power amplifier. In: IEEE MTT-S International Microwave Symposium Digest, pp. 30–32 (2012) Sengupta, K., Dasgupta, K., Bowers, S.M., Hajimiri, A.: On-chip sensing and actuation methods for integrated self-healing mm-wave CMOS power amplifier. In: IEEE MTT-S International Microwave Symposium Digest, pp. 30–32 (2012)
116.
go back to reference Pfeiffer, U.R., Goren, D.: A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control. IEEE J. Solid-State Circuits 42(7), 1455–1463 (2007) Pfeiffer, U.R., Goren, D.: A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control. IEEE J. Solid-State Circuits 42(7), 1455–1463 (2007)
117.
go back to reference Gupta, K.C., Garg, R., Bahl, I.J.: Microstrip Lines and Slotlines. Artech House, Inc., Dedham, Massachussets (1979) Gupta, K.C., Garg, R., Bahl, I.J.: Microstrip Lines and Slotlines. Artech House, Inc., Dedham, Massachussets (1979)
Metadata
Title
Architecture Considerations for Millimeter-Wave Power Amplifiers
Authors
Jaco du Preez
Saurabh Sinha
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-62166-1_8