Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Architectured Polymeric Materials Produced by Additive Manufacturing

Authors : Andrey Molotnikov, George P. Simon, Yuri Estrin

Published in: Architectured Materials in Nature and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymers play an important role in our everyday life. With the advent of additive manufacturing (AM) technologies, the design and manufacture of new polymer-based composite materials has experienced a significant boost. AM enables precise deposition of printable material(s) with micro scale accuracy to build up a desired structure in three dimensions in a layer-by-layer fashion. In this chapter, recent advances in the use of additive manufacturing for the design of architectured polymer-based materials is discussed. A compendium of the existing AM methods is presented, followed by an overview of applications of AM technology to fabrication of polymer-based materials with engineered inner architecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Weiner, H.D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28(1), 271–298 (1998)CrossRef S. Weiner, H.D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28(1), 271–298 (1998)CrossRef
2.
go back to reference P. Fratzl et al., Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)CrossRef P. Fratzl et al., Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14(14), 2115–2123 (2004)CrossRef
3.
go back to reference J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002) J.D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002)
4.
go back to reference P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007)CrossRef P. Fratzl, R. Weinkamer, Nature’s hierarchical materials. Prog. Mater Sci. 52(8), 1263–1334 (2007)CrossRef
5.
go back to reference B. Pokroy, V. Demensky, E. Zolotoyabko, Nacre in mollusk shells as a multilayered structure with strain gradient. Adv. Funct. Mater. 19(7), 1054–1059 (2009)CrossRef B. Pokroy, V. Demensky, E. Zolotoyabko, Nacre in mollusk shells as a multilayered structure with strain gradient. Adv. Funct. Mater. 19(7), 1054–1059 (2009)CrossRef
6.
go back to reference M.A. Meyers et al., Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1(1), 76–85 (2008)CrossRef M.A. Meyers et al., Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1(1), 76–85 (2008)CrossRef
7.
go back to reference J. Aizenberg et al., Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. U.S.A. 101(10), 3358 (2004)CrossRef J. Aizenberg et al., Biological glass fibers: correlation between optical and structural properties. Proc. Natl. Acad. Sci. U.S.A. 101(10), 3358 (2004)CrossRef
8.
go back to reference R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011)CrossRef R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–822 (2011)CrossRef
9.
go back to reference M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRef M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Acta Mater. 51(19), 5801–5821 (2003)CrossRef
10.
go back to reference Y.J.M. Brechet, Chapter 1 Architectured materials: an alternative to microstructure control for structural materials design? A possible playground for bio-inspiration? in Materials Design Inspired by Nature: Function Through Inner Architecture (The Royal Society of Chemistry, 2013), pp. 1–16 Y.J.M. Brechet, Chapter 1 Architectured materials: an alternative to microstructure control for structural materials design? A possible playground for bio-inspiration? in Materials Design Inspired by Nature: Function Through Inner Architecture (The Royal Society of Chemistry, 2013), pp. 1–16
11.
go back to reference I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2015)CrossRef I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2015)CrossRef
12.
go back to reference R. D’Aveni, The 3-D printing revolution. Harvard Bus. Rev. 93(5), 40–48 (2015) R. D’Aveni, The 3-D printing revolution. Harvard Bus. Rev. 93(5), 40–48 (2015)
13.
go back to reference R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540(7633), 371–378 (2016)CrossRef R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540(7633), 371–378 (2016)CrossRef
14.
go back to reference C.W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography (USA, 1986) C.W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography (USA, 1986)
15.
go back to reference R. Raman, R. Bashir, Chapter 6—Stereolithographic 3D bioprinting for biomedical applications, in Essentials of 3D Biofabrication and Translation, ed. by A. Atala, J.J. Yoo (Academic Press, Boston, 2015), pp. 89–121 R. Raman, R. Bashir, Chapter 6—Stereolithographic 3D bioprinting for biomedical applications, in Essentials of 3D Biofabrication and Translation, ed. by A. Atala, J.J. Yoo (Academic Press, Boston, 2015), pp. 89–121
16.
go back to reference J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016)CrossRef J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: challenges among expanding options and opportunities. Dent. Mater. 32(1), 54–64 (2016)CrossRef
17.
go back to reference F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)CrossRef F.P.W. Melchels, J. Feijen, D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)CrossRef
18.
go back to reference J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science 347(6228), 1349 (2015)CrossRef J.R. Tumbleston et al., Continuous liquid interface production of 3D objects. Science 347(6228), 1349 (2015)CrossRef
19.
go back to reference C. Heller et al., Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. Part A Polym. Chem. 47(24), 6941–6954 (2009)CrossRef C. Heller et al., Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J. Polym. Sci. Part A Polym. Chem. 47(24), 6941–6954 (2009)CrossRef
21.
go back to reference B.H. Cumpston et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51 (1999)CrossRef B.H. Cumpston et al., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51 (1999)CrossRef
22.
go back to reference M. Farsari et al., Three-dimensional biomolecule patterning. Appl. Surf. Sci. 253(19), 8115–8118 (2007)CrossRef M. Farsari et al., Three-dimensional biomolecule patterning. Appl. Surf. Sci. 253(19), 8115–8118 (2007)CrossRef
23.
go back to reference L.R. Meza et al., Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112, 11502–11507 (2015)CrossRef L.R. Meza et al., Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. 112, 11502–11507 (2015)CrossRef
24.
go back to reference X. Zheng et al., Multiscale metallic metamaterials. Nat. Mater. 15(10), 1100–1106 (2016)CrossRef X. Zheng et al., Multiscale metallic metamaterials. Nat. Mater. 15(10), 1100–1106 (2016)CrossRef
25.
go back to reference F. Kotz et al., Three-dimensional printing of transparent fused silica glass. Nature 544(7650), 337–339 (2017)CrossRef F. Kotz et al., Three-dimensional printing of transparent fused silica glass. Nature 544(7650), 337–339 (2017)CrossRef
26.
go back to reference J.H. Sandoval, B.W. Ryan, Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyping J. 12(5), 292–303 (2006)CrossRef J.H. Sandoval, B.W. Ryan, Functionalizing stereolithography resins: effects of dispersed multi-walled carbon nanotubes on physical properties. Rapid Prototyping J. 12(5), 292–303 (2006)CrossRef
27.
go back to reference L. Dong et al., 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43), 434003 (2015)CrossRef L. Dong et al., 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43), 434003 (2015)CrossRef
28.
go back to reference Y. Duan et al., Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyping J. 17(4), 247–252 (2011)CrossRef Y. Duan et al., Nano-TiO2-modified photosensitive resin for RP. Rapid Prototyping J. 17(4), 247–252 (2011)CrossRef
29.
go back to reference J.-W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Technol. 49(5), 543–551 (2010)CrossRef J.-W. Choi, E. MacDonald, R. Wicker, Multi-material microstereolithography. Int. J. Adv. Manuf. Technol. 49(5), 543–551 (2010)CrossRef
30.
go back to reference J.-W. Choi, H.-C. Kim, R. Wicker, Multi-material stereolithography. J. Mater. Process. Technol. 211(3), 318–328 (2011)CrossRef J.-W. Choi, H.-C. Kim, R. Wicker, Multi-material stereolithography. J. Mater. Process. Technol. 211(3), 318–328 (2011)CrossRef
31.
go back to reference K. Arcaute, B. Mann, R. Wicker, Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6(3), 1047–1054 (2010)CrossRef K. Arcaute, B. Mann, R. Wicker, Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6(3), 1047–1054 (2010)CrossRef
32.
go back to reference R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers. Prog. Mater Sci. 57(2), 229–267 (2012)CrossRef R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers. Prog. Mater Sci. 57(2), 229–267 (2012)CrossRef
33.
go back to reference J.P. Kruth et al., Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 56(2), 730–759 (2007)CrossRef J.P. Kruth et al., Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 56(2), 730–759 (2007)CrossRef
34.
go back to reference H. Chung, S. Das, Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1), 251–257 (2008)CrossRef H. Chung, S. Das, Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater. Sci. Eng. A 487(1), 251–257 (2008)CrossRef
35.
go back to reference S.R. Athreya, K. Kalaitzidou, S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng. A 527(10), 2637–2642 (2010)CrossRef S.R. Athreya, K. Kalaitzidou, S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering. Mater. Sci. Eng. A 527(10), 2637–2642 (2010)CrossRef
36.
go back to reference H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)CrossRef H. Chung, S. Das, Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater. Sci. Eng. A 437(2), 226–234 (2006)CrossRef
37.
go back to reference H.C. Kim, H.T. Hahn, Y.S. Yang, Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process. J. Compos. Mater. 47(4), 501–509 (2012)CrossRef H.C. Kim, H.T. Hahn, Y.S. Yang, Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process. J. Compos. Mater. 47(4), 501–509 (2012)CrossRef
38.
go back to reference H. Zheng et al., Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater. Lett. 60(9), 1219–1223 (2006)CrossRef H. Zheng et al., Effect of core–shell composite particles on the sintering behavior and properties of nano-Al2O3/polystyrene composite prepared by SLS. Mater. Lett. 60(9), 1219–1223 (2006)CrossRef
39.
go back to reference X. Wang et al., 3D printing of polymer matrix composites: a review and prospective. Compos. B Eng. 110, 442–458 (2017)CrossRef X. Wang et al., 3D printing of polymer matrix composites: a review and prospective. Compos. B Eng. 110, 442–458 (2017)CrossRef
40.
go back to reference E. Kroner, E. Arzt, Gecko Adhesion, in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer Netherlands, 2012), pp. 934–943 E. Kroner, E. Arzt, Gecko Adhesion, in Encyclopedia of Nanotechnology, ed. by B. Bhushan (Springer Netherlands, 2012), pp. 934–943
41.
go back to reference B.N. Turner, S.A. Gold, A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping J. 21(3), 250–261 (2015)CrossRef B.N. Turner, S.A. Gold, A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping J. 21(3), 250–261 (2015)CrossRef
42.
go back to reference B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J. 20(3), 192–204 (2014)CrossRef B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J. 20(3), 192–204 (2014)CrossRef
43.
go back to reference W. Zhong et al., Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301(2), 125–130 (2001)CrossRef W. Zhong et al., Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 301(2), 125–130 (2001)CrossRef
44.
go back to reference H.L. Tekinalp et al., Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)CrossRef H.L. Tekinalp et al., Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)CrossRef
45.
go back to reference F. Ning et al., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 80, 369–378 (2015)CrossRef F. Ning et al., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. B Eng. 80, 369–378 (2015)CrossRef
46.
go back to reference X. Tian et al., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 88, 198–205 (2016)CrossRef X. Tian et al., Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 88, 198–205 (2016)CrossRef
47.
48.
go back to reference Y. Chuncheng et al., 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping J. 23(1), 209–215 (2017)CrossRef Y. Chuncheng et al., 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping J. 23(1), 209–215 (2017)CrossRef
49.
go back to reference G.W. Melenka et al., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 153, 866–875 (2016)CrossRef G.W. Melenka et al., Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 153, 866–875 (2016)CrossRef
50.
go back to reference R. Matsuzaki et al., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)CrossRef R. Matsuzaki et al., Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016)CrossRef
51.
go back to reference M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)CrossRef M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32(6), 3448–3456 (2011)CrossRef
52.
go back to reference A.A. Zadpoor, J. Malda, Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45(1), 1–11 (2017)CrossRef A.A. Zadpoor, J. Malda, Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45(1), 1–11 (2017)CrossRef
53.
go back to reference F.S. Senatov et al., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 57, 139–148 (2016)CrossRef F.S. Senatov et al., Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 57, 139–148 (2016)CrossRef
54.
go back to reference Q. Zhang et al., Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 5, 8936 (2015)CrossRef Q. Zhang et al., Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci. Rep. 5, 8936 (2015)CrossRef
55.
go back to reference Z.X. Khoo et al., 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyping 10(3), 103–122 (2015)CrossRef Z.X. Khoo et al., 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyping 10(3), 103–122 (2015)CrossRef
56.
go back to reference T. van Manen, S. Janbaz, A.A. Zadpoor, Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz. 4(6), 1064–1069 (2017)CrossRef T. van Manen, S. Janbaz, A.A. Zadpoor, Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz. 4(6), 1064–1069 (2017)CrossRef
57.
go back to reference E. David et al., Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyping J. 20(3), 236–244 (2014)CrossRef E. David et al., Multi-material, multi-technology FDM: exploring build process variations. Rapid Prototyping J. 20(3), 236–244 (2014)CrossRef
58.
go back to reference N. Way, Additive Manufacturing of Multi-Material Composite Flexible Structures in Department of Materials Science and Enginering (Monash University, Clayton, 2017) N. Way, Additive Manufacturing of Multi-Material Composite Flexible Structures in Department of Materials Science and Enginering (Monash University, Clayton, 2017)
59.
go back to reference J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16(17), 2193–2204 (2006)CrossRef J.A. Lewis, Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16(17), 2193–2204 (2006)CrossRef
60.
go back to reference A. Sydney Gladman et al., Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)CrossRef A. Sydney Gladman et al., Biomimetic 4D printing. Nat. Mater. 15, 413 (2016)CrossRef
61.
go back to reference Y. Kim et al., Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)CrossRef Y. Kim et al., Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)CrossRef
62.
go back to reference A. Clausen et al., Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27(37), 5523–5527 (2015)CrossRef A. Clausen et al., Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27(37), 5523–5527 (2015)CrossRef
63.
go back to reference S. Shan et al., Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27(29), 4296–4301 (2015)CrossRef S. Shan et al., Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27(29), 4296–4301 (2015)CrossRef
64.
go back to reference T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. 112(40), 12293–12298 (2015)CrossRef T.J. Ober, D. Foresti, J.A. Lewis, Active mixing of complex fluids at the microscale. Proc. Natl. Acad. Sci. 112(40), 12293–12298 (2015)CrossRef
65.
go back to reference B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2014)CrossRef B.G. Compton, J.A. Lewis, 3D-printing of lightweight cellular composites. Adv. Mater. 26(34), 5930–5935 (2014)CrossRef
66.
go back to reference J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015)CrossRef J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015)CrossRef
67.
go back to reference A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45(2), 359–376 (2016)CrossRef A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45(2), 359–376 (2016)CrossRef
68.
go back to reference J.R. Raney et al., Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. (2018) J.R. Raney et al., Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc. Natl. Acad. Sci. (2018)
69.
go back to reference B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)CrossRef
70.
go back to reference L.S. Dimas et al., Tough composites inspired by mineralized natural materials: computation, 3d printing, and testing. Adv. Funct. Mater. 23(36), 4629–4638 (2013)CrossRef L.S. Dimas et al., Tough composites inspired by mineralized natural materials: computation, 3d printing, and testing. Adv. Funct. Mater. 23(36), 4629–4638 (2013)CrossRef
71.
go back to reference L.S. Dimas, M.J. Buehler, Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter 10(25), 4436–4442 (2014)CrossRef L.S. Dimas, M.J. Buehler, Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter 10(25), 4436–4442 (2014)CrossRef
72.
go back to reference E. Lin et al., 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids 73, 166–182 (2014)CrossRef E. Lin et al., 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids 73, 166–182 (2014)CrossRef
73.
go back to reference P. Zhang, M.A. Heyne, A.C. To, Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J. Mech. Phys. Solids 83, 285–300 (2015)CrossRef P. Zhang, M.A. Heyne, A.C. To, Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J. Mech. Phys. Solids 83, 285–300 (2015)CrossRef
74.
go back to reference V. Slesarenko, N. Kazarinov, S. Rudykh, Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings. Smart Mater. Struct. 26(3), 035053 (2017)CrossRef V. Slesarenko, N. Kazarinov, S. Rudykh, Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings. Smart Mater. Struct. 26(3), 035053 (2017)CrossRef
75.
go back to reference R. Mirzaeifar et al., Defect-tolerant bioinspired hierarchical composites: simulation and experiment. ACS Biomater. Sci. Eng. 1(5), 295–304 (2015)CrossRef R. Mirzaeifar et al., Defect-tolerant bioinspired hierarchical composites: simulation and experiment. ACS Biomater. Sci. Eng. 1(5), 295–304 (2015)CrossRef
76.
go back to reference F. Libonati et al., Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18(8), 1354–1363 (2016)CrossRef F. Libonati et al., Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18(8), 1354–1363 (2016)CrossRef
77.
go back to reference L. Guiducci et al., Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS ONE 11(11), e0163506 (2016)CrossRef L. Guiducci et al., Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS ONE 11(11), e0163506 (2016)CrossRef
78.
go back to reference L. Guiducci et al., The geometric design and fabrication of actuating cellular structures. Adv. Mater. Interfaces 2(11), 1–6 (2015)CrossRef L. Guiducci et al., The geometric design and fabrication of actuating cellular structures. Adv. Mater. Interfaces 2(11), 1–6 (2015)CrossRef
79.
go back to reference D. Raviv et al., Active printed materials for complex self-evolving deformations. Sci. Rep. 4, 7422 (2014)CrossRef D. Raviv et al., Active printed materials for complex self-evolving deformations. Sci. Rep. 4, 7422 (2014)CrossRef
80.
go back to reference L. Wen, J.C. Weaver, G.V. Lauder, Biomimetic shark skin: design, fabrication and hydrodynamic function. J. Exp. Biol. 217(10), 1656–1666 (2014)CrossRef L. Wen, J.C. Weaver, G.V. Lauder, Biomimetic shark skin: design, fabrication and hydrodynamic function. J. Exp. Biol. 217(10), 1656–1666 (2014)CrossRef
81.
go back to reference A.G. Domel et al., Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 15(139) (2018) A.G. Domel et al., Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 15(139) (2018)
82.
go back to reference T. Skylar, C. Kenny, Programmable materials for architectural assembly and automation. Assembly Autom. 32(3), 216–225 (2012)CrossRef T. Skylar, C. Kenny, Programmable materials for architectural assembly and automation. Assembly Autom. 32(3), 216–225 (2012)CrossRef
83.
go back to reference S. Tibbits, Design to self-assembly. Architectural Des. 82(2), 68–73 (2012) S. Tibbits, Design to self-assembly. Architectural Des. 82(2), 68–73 (2012)
84.
go back to reference G.X. Gu et al., Printing nature: unraveling the role of nacre’s mineral bridges. J. Mech. Behav. Biomed. Mater. 76, 135–144 (2017)CrossRef G.X. Gu et al., Printing nature: unraveling the role of nacre’s mineral bridges. J. Mech. Behav. Biomed. Mater. 76, 135–144 (2017)CrossRef
85.
go back to reference L. Djumas et al., Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci. Rep. 6, 26706 (2016)CrossRef L. Djumas et al., Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci. Rep. 6, 26706 (2016)CrossRef
86.
go back to reference G.X. Gu et al., Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mech. Lett. 9, 317–323 (2016)CrossRef G.X. Gu et al., Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mech. Lett. 9, 317–323 (2016)CrossRef
87.
go back to reference G.X. Gu, M. Takaffoli, M.J. Buehler, Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29(28), 1700060 (2017)CrossRef G.X. Gu, M. Takaffoli, M.J. Buehler, Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29(28), 1700060 (2017)CrossRef
88.
go back to reference Y. Jingjie et al., Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys. Scr. 93(5), 053003 (2018)CrossRef Y. Jingjie et al., Materials-by-design: computation, synthesis, and characterization from atoms to structures. Phys. Scr. 93(5), 053003 (2018)CrossRef
89.
go back to reference Y. Zheng, Design of hybrid materials using multi-material 3D printer, in Department of Materials Science and Engineering (Monash University, Clayton, Australia, 2015) Y. Zheng, Design of hybrid materials using multi-material 3D printer, in Department of Materials Science and Engineering (Monash University, Clayton, Australia, 2015)
90.
go back to reference M. Kamperman et al., Functional adhesive surfaces with “Gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12(5), 335–348 (2010)CrossRef M. Kamperman et al., Functional adhesive surfaces with “Gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12(5), 335–348 (2010)CrossRef
91.
go back to reference M. Micciché, E. Arzt, E. Kroner, Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle. ACS Appl. Mater. Interfaces 6(10), 7076–7083 (2014)CrossRef M. Micciché, E. Arzt, E. Kroner, Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle. ACS Appl. Mater. Interfaces 6(10), 7076–7083 (2014)CrossRef
92.
go back to reference G. Qi et al., Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014)CrossRef G. Qi et al., Active origami by 4D printing. Smart Mater. Struct. 23(9), 094007 (2014)CrossRef
93.
go back to reference Q. Ge, H.J. Qi, M.L. Dunn, Active materials by four-dimension printing. Appl. Phys. Lett. 103(13), 131901 (2013)CrossRef Q. Ge, H.J. Qi, M.L. Dunn, Active materials by four-dimension printing. Appl. Phys. Lett. 103(13), 131901 (2013)CrossRef
94.
go back to reference A.T. Gaynor et al., Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136(6), 061015 (2014)CrossRef A.T. Gaynor et al., Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136(6), 061015 (2014)CrossRef
95.
go back to reference E. Bafekrpour et al., Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)CrossRef E. Bafekrpour et al., Internally architectured materials with directionally asymmetric friction. Sci. Rep. 5, 10732 (2015)CrossRef
96.
go back to reference E. Bafekrpour et al., Responsive materials: a novel design for enhanced machine-augmented composites. Sci. Rep. 4, 3783 (2014)CrossRef E. Bafekrpour et al., Responsive materials: a novel design for enhanced machine-augmented composites. Sci. Rep. 4, 3783 (2014)CrossRef
97.
go back to reference G.F. Hawkins, Augmenting the mechanical properties of materials by embedding simple machines. J. Adv. Mater. 34, 16–20 (2002) G.F. Hawkins, Augmenting the mechanical properties of materials by embedding simple machines. J. Adv. Mater. 34, 16–20 (2002)
98.
go back to reference F. Javid et al., Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials. Sci. Rep. 5, 18373 (2015)CrossRef F. Javid et al., Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials. Sci. Rep. 5, 18373 (2015)CrossRef
99.
go back to reference Z. Liu et al., Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017)CrossRef Z. Liu et al., Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017)CrossRef
100.
go back to reference P.-Y. Chen, J. McKittrick, M.A. Meyers, Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57(8), 1492–1704 (2012)CrossRef P.-Y. Chen, J. McKittrick, M.A. Meyers, Biological materials: functional adaptations and bioinspired designs. Prog. Mater. Sci. 57(8), 1492–1704 (2012)CrossRef
101.
go back to reference M.A. Meyers et al., Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4(5), 626–657 (2011)CrossRef M.A. Meyers et al., Biological materials: a materials science approach. J. Mech. Behav. Biomed. Mater. 4(5), 626–657 (2011)CrossRef
102.
go back to reference I.H. Chen et al., Armadillo armor: mechanical testing and micro-structural evaluation. J. Mech. Behav. Biomed. Mater. 4(5), 713–722 (2011)CrossRef I.H. Chen et al., Armadillo armor: mechanical testing and micro-structural evaluation. J. Mech. Behav. Biomed. Mater. 4(5), 713–722 (2011)CrossRef
103.
go back to reference E.L. Doubrovski et al., Voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput. Aided Des. 60, 3–13 (2015)CrossRef E.L. Doubrovski et al., Voxel-based fabrication through material property mapping: a design method for bitmap printing. Comput. Aided Des. 60, 3–13 (2015)CrossRef
104.
go back to reference M. Osanov, J.K. Guest, Topology optimization for architected materials design, in Annual Review of Materials Research, ed. by D.R. Clarke, vol 46 (Annual Reviews, Palo Alto, 2016), pp. 211–233 M. Osanov, J.K. Guest, Topology optimization for architected materials design, in Annual Review of Materials Research, ed. by D.R. Clarke, vol 46 (Annual Reviews, Palo Alto, 2016), pp. 211–233
105.
go back to reference P. Zhang et al., Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation. J. Manuf. Sci. Eng. 137(2), 021004 (2015)CrossRef P. Zhang et al., Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: theory and validation. J. Manuf. Sci. Eng. 137(2), 021004 (2015)CrossRef
106.
go back to reference G.X. Gu, C.-T. Chen, M.J. Buehler, De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19–28 (2018)CrossRef G.X. Gu, C.-T. Chen, M.J. Buehler, De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19–28 (2018)CrossRef
Metadata
Title
Architectured Polymeric Materials Produced by Additive Manufacturing
Authors
Andrey Molotnikov
George P. Simon
Yuri Estrin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11942-3_9

Premium Partners