Skip to main content
Top

2018 | OriginalPaper | Chapter

Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution

Author : Nikolay G. Iakovlev

Published in: The Ocean in Motion

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern numerical models of the Arctic Ocean (AO) exhibit the great progress partly thanks to the fine horizontal resolution, which helps to resolve many of the relevant processes explicitly. Nevertheless, some of the AO features are still modeled poorly by the models with a resolution of 5–10 km. It is anticipated, that the further increase in the horizontal resolution up to 100–1000 m will demand the understanding of the role of the AO specific processes. This paper is a brief review of some of such processes like mesoscale and submesoscale eddies and internal waves, and of the problems of their parameterization, caused by the closeness of their spatial scales. The internal waves and the internal wave-induced mixing are assumed to be the key processes to be taken into account to describe the AO cold halocline mixing properly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., de Cuevas, B., Golubeva, E., et al. (2016) Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments. Journal of Geophysical Research Oceans, 121, 27–59. Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., de Cuevas, B., Golubeva, E., et al. (2016) Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments. Journal of Geophysical Research Oceans, 121, 27–59.
3.
go back to reference Fox-Kemper, B., Ferrari, R., & Hallberg, R. (2008). Parameterization of mixed layer eddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, 38, 1145–1165.CrossRef Fox-Kemper, B., Ferrari, R., & Hallberg, R. (2008). Parameterization of mixed layer eddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, 38, 1145–1165.CrossRef
4.
go back to reference Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155.CrossRef Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155.CrossRef
5.
go back to reference Hines, C. O. (1997). Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2. Broad and quasimonochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387–400.CrossRef Hines, C. O. (1997). Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2. Broad and quasimonochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387–400.CrossRef
8.
go back to reference Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363–403.CrossRef Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363–403.CrossRef
9.
go back to reference LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean (p. 602). Amsterdam: Elsevier Oceanographic Series, Elsevier Scientific Publishing Company. LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean (p. 602). Amsterdam: Elsevier Oceanographic Series, Elsevier Scientific Publishing Company.
10.
go back to reference Marshall, J., Hill, C., Perelman, L., Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102(C3), 5733–5752. Marshall, J., Hill, C., Perelman, L., Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102(C3), 5733–5752.
11.
go back to reference McPhee, M. G., & Kantha, L. H. (1989). Generation of internal waves by sea ice. Journal Geophysical Research, 94(C3), 3287–3302.CrossRef McPhee, M. G., & Kantha, L. H. (1989). Generation of internal waves by sea ice. Journal Geophysical Research, 94(C3), 3287–3302.CrossRef
13.
go back to reference Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the Arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161. Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the Arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161.
19.
go back to reference Morozov, E. G., Pisarev, S. V., Neiman, V. G., & Erofeeva, S. Y. (2003). Internal tidal waves in the Barents Sea. Doklady Earth Sciences, 393(8), 1124–1126. Morozov, E. G., Pisarev, S. V., Neiman, V. G., & Erofeeva, S. Y. (2003). Internal tidal waves in the Barents Sea. Doklady Earth Sciences, 393(8), 1124–1126.
20.
go back to reference Morozov, E. G., & Pisarev, S. V. (2003). Internal waves and polynya formation in the Laptev Sea. Doklady Earth Sciences, 398(7), 983–986. Morozov, E. G., & Pisarev, S. V. (2003). Internal waves and polynya formation in the Laptev Sea. Doklady Earth Sciences, 398(7), 983–986.
21.
go back to reference Nurser, A. J. G., & Bacon, S. (2014). The Rossby radius in the Arctic Ocean. Ocean Science, 10, 967–975.CrossRef Nurser, A. J. G., & Bacon, S. (2014). The Rossby radius in the Arctic Ocean. Ocean Science, 10, 967–975.CrossRef
22.
go back to reference Palmer, T. N., Shutts, G. J., & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112, 1001–1031.CrossRef Palmer, T. N., Shutts, G. J., & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112, 1001–1031.CrossRef
24.
go back to reference Rudels, B., Jones, E. P., Anderson, L. G., Kattner, G. (1994) On the intermediate depth waters of the Arctic Ocean. In O. M. Johannessen, R. D. Muench, J. E. Overland (Eds.), The Polar Oceans and their role in shaping the global environment. Geophysical monograph. 85: 33–46. Rudels, B., Jones, E. P., Anderson, L. G., Kattner, G. (1994) On the intermediate depth waters of the Arctic Ocean. In O. M. Johannessen, R. D. Muench, J. E. Overland (Eds.), The Polar Oceans and their role in shaping the global environment. Geophysical monograph. 85: 33–46.
25.
go back to reference Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77, 85–96.CrossRef Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77, 85–96.CrossRef
26.
go back to reference Timmermans, M.-L., Toole, J., Proshutinsky, A., Krishfield, R., & Plueddemann, A. (2008). Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. Journal of Physical Oceanography, 38, 133–145.CrossRef Timmermans, M.-L., Toole, J., Proshutinsky, A., Krishfield, R., & Plueddemann, A. (2008). Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. Journal of Physical Oceanography, 38, 133–145.CrossRef
27.
go back to reference Visbeck, M., Marshall, J., Haine, T., & Spall, M. (1997). Specification of eddy transfer coefficients in coarse resolution ocean circulation models. Journal of Physical Oceanography, 27, 381–402.CrossRef Visbeck, M., Marshall, J., Haine, T., & Spall, M. (1997). Specification of eddy transfer coefficients in coarse resolution ocean circulation models. Journal of Physical Oceanography, 27, 381–402.CrossRef
28.
go back to reference Voltzinger, N. E., & Androsov, A. A. (2016). Nonhydrostatic dynamics of straits of the World Ocean. Fundamentalnaya i prikladnaya gidrofizika, 9(1), 26–40. (in Russian). Voltzinger, N. E., & Androsov, A. A. (2016). Nonhydrostatic dynamics of straits of the World Ocean. Fundamentalnaya i prikladnaya gidrofizika, 9(1), 26–40. (in Russian).
Metadata
Title
Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution
Author
Nikolay G. Iakovlev
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_35