Skip to main content
Top

2024 | OriginalPaper | Chapter

Area and Perimeter Full Distribution Functions for Planar Poisson Line Processes and Voronoi Diagrams

Authors : Alexei Kanel-Belov, Mehdi Golafshan, Sergey Malev, Roman Yavich

Published in: New Trends in the Applications of Differential Equations in Sciences

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The challenges of examining random partitions of space are a significant class of problems in the theory of geometric transformations. Richard Miles calculated moments of areas and perimeters of any order (including expectation) of the random division of space in 1972. In the paper we calculate whole distribution function of random divisions of plane by Poisson line process. Our idea is to interpret a random polygon as the evolution of a segment along a moving straight line. In the plane example, the issue connected with an infinite number of parameters is overcome by considering a secant line. We shall take into account the following tasks: 1. On the plane, a random set of straight lines is provided, all shifts are equally likely, and the distribution law is of the form \(F(\varphi ).\) What is the area distribution of the partition’s components? 2. On the plane, a random set of points is marked. Each point A has an associated area of attraction, which is the collection of points in the plane to which the point A is the nearest of the designated ones. In the first problem, the density of moved sections adjacent to the line allows for the expression of the balancing ratio in kinetic form. Similarly, one can write the perimeters’ kinetic equations. We will demonstrate how to reduce these equations to the Riccati equation using the Laplace transformation in this paper. In fact, we formulate the distribution function of area and perimeter and the joint distribution of them with a Poisson line process based on differential equations. Also, for Voronoi diagrams. These are the main search results (see Theorems 1, 2, 3).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Kanel-Belov. Geometric properties of block media, Dep. in VINITI. No.272-B91, VINITI, Moscow, 1991. ( in Russian) A. Kanel-Belov. Geometric properties of block media, Dep. in VINITI. No.272-B91, VINITI, Moscow, 1991. ( in Russian)
2.
go back to reference A. Kanel-Belov. Statistical geometry and equilibrium of block arrays, PhD dissertation in Mathematics and Physics, Moscow State University, Moscow, 1991. ( in Russian) A. Kanel-Belov. Statistical geometry and equilibrium of block arrays, PhD dissertation in Mathematics and Physics, Moscow State University, Moscow, 1991. ( in Russian)
3.
go back to reference P. Moran, M. Kendall. Geometrical Probability, Andesite Press, 2015. P. Moran, M. Kendall. Geometrical Probability, Andesite Press, 2015.
4.
go back to reference G. Matheron. Random sets and integral geometry, Wiley series in probability and mathematical statistics, 1974. G. Matheron. Random sets and integral geometry, Wiley series in probability and mathematical statistics, 1974.
5.
go back to reference R. Ambartsumyan, Y. Mekke, D.Shtoyan. Introduction to Stochastic Geometry, Nauka, 1989. ( in Russian) R. Ambartsumyan, Y. Mekke, D.Shtoyan. Introduction to Stochastic Geometry, Nauka, 1989. ( in Russian)
6.
go back to reference N. Anoshchenko. Geometric analysis of fracturing and blockiness of facing stone deposits, Mathematical methods and applications. The Fourth Mathematical Symposium. Moscow State University, 1983. ( in Russian) N. Anoshchenko. Geometric analysis of fracturing and blockiness of facing stone deposits, Mathematical methods and applications. The Fourth Mathematical Symposium. Moscow State University, 1983. ( in Russian)
7.
go back to reference J. Lamperti. Probability. A survey of the mathematical theory Mathematics Monograph Series. New York-Amsterdam: W.A. Benjamin, Inc. X, 150 p. (1966). J. Lamperti. Probability. A survey of the mathematical theory Mathematics Monograph Series. New York-Amsterdam: W.A. Benjamin, Inc. X, 150 p. (1966).
8.
go back to reference R. Miles. The random division of space, Advances in Applied Probability, 1972. R. Miles. The random division of space, Advances in Applied Probability, 1972.
9.
go back to reference R. Miles. Poisson flats in euclidean spaces, Adv. Appl. Prob., Vol. 1, pp. 211-237. R. Miles. Poisson flats in euclidean spaces, Adv. Appl. Prob., Vol. 1, pp. 211-237.
10.
go back to reference A. Kanel-Belov. On random partitions, Dep. in VINITI. No.273-B91, VINITI, Moscow, 1991. ( in Russian) A. Kanel-Belov. On random partitions, Dep. in VINITI. No.273-B91, VINITI, Moscow, 1991. ( in Russian)
11.
go back to reference A. Kanel-Belov, M. Golafshan, S. Malev, R.Yavich. ABOUT RANDOM SPLITTING OF THE PLANE, Crimean Autumn Mathematical School-Symposium (KROMSH), p: 294-295 2020. A. Kanel-Belov, M. Golafshan, S. Malev, R.Yavich. ABOUT RANDOM SPLITTING OF THE PLANE, Crimean Autumn Mathematical School-Symposium (KROMSH), p: 294-295 2020.
12.
go back to reference L. Santalo. Integral Geometry and Geometric Probability, Cambridge Mathematical Library, 1976. L. Santalo. Integral Geometry and Geometric Probability, Cambridge Mathematical Library, 1976.
13.
go back to reference A. Kanel-Belov, M. Golafshan, S. Malev, R.Yavich. On the Distribution function of area and perimeter for planar poisson line process, preprint, available on arXiv:2205.05151 A. Kanel-Belov, M. Golafshan, S. Malev, R.Yavich. On the Distribution function of area and perimeter for planar poisson line process, preprint, available on arXiv:2205.05151
Metadata
Title
Area and Perimeter Full Distribution Functions for Planar Poisson Line Processes and Voronoi Diagrams
Authors
Alexei Kanel-Belov
Mehdi Golafshan
Sergey Malev
Roman Yavich
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_14

Premium Partner