Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Arktische Schmelze und Zukunft des Meereises

Author : Klaus Dethloff

Published in: Unberechenbares Klima

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Die frühe arktische Erwärmung zwischen 1920 und 1945 wird mit intern generierter Variabilität in Verbindung gebracht und durch die CMIP-Modelle nicht reproduziert.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Brasseur, G., and S. Solomon, 2005, Aeronomy of the Middle Atmosphere, Reidel Co., Dordrecht, Springer, 644 S. Brasseur, G., and S. Solomon, 2005, Aeronomy of the Middle Atmosphere, Reidel Co., Dordrecht, Springer, 644 S.
go back to reference Charney, J. G., and P. G. Drazin, 1961, Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 36, 1205–1216. Charney, J. G., and P. G. Drazin, 1961, Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 36, 1205–1216.
go back to reference Corti, S., et al., 1999, Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature 398, 799–802.ADSCrossRef Corti, S., et al., 1999, Signature of recent climate change in frequencies of natural atmospheric circulation regimes, Nature 398, 799–802.ADSCrossRef
go back to reference Dethloff, K., et al., 2019, Kältere Winter durch abnehmendes arktisches Meereis, Phys. in unserer Zeit, 6, 290–297.ADSCrossRef Dethloff, K., et al., 2019, Kältere Winter durch abnehmendes arktisches Meereis, Phys. in unserer Zeit, 6, 290–297.ADSCrossRef
go back to reference Fabiano, F., et al., 2021, A regime view of future atmospheric circulation, changes in northern mid-latitudes, Wea. Climate Dyn., 2, 163–180.ADSCrossRef Fabiano, F., et al., 2021, A regime view of future atmospheric circulation, changes in northern mid-latitudes, Wea. Climate Dyn., 2, 163–180.ADSCrossRef
go back to reference Hasselmann, K., 1999, Climate change: Linear and nonlinear signatures, Nature, 398, 755–756.ADSCrossRef Hasselmann, K., 1999, Climate change: Linear and nonlinear signatures, Nature, 398, 755–756.ADSCrossRef
go back to reference Hawkins, E., and R. Sutton, 2011, The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37, 407–418.CrossRef Hawkins, E., and R. Sutton, 2011, The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37, 407–418.CrossRef
go back to reference Jaiser, R., et al., 2019, Interaction of diabatic processes, large-scale eddies and the mean atmospheric circulation over the Atlantic, Arctic and Eurasia. Adv. Polar Sci. 30, 81–92. Jaiser, R., et al., 2019, Interaction of diabatic processes, large-scale eddies and the mean atmospheric circulation over the Atlantic, Arctic and Eurasia. Adv. Polar Sci. 30, 81–92.
go back to reference Kjellström, E., et al., 2011, 21st century changes in the European climate: uncertainties derived form an ensemble of regional climate model simulations, Tellus, 63A, 24–40.ADSCrossRef Kjellström, E., et al., 2011, 21st century changes in the European climate: uncertainties derived form an ensemble of regional climate model simulations, Tellus, 63A, 24–40.ADSCrossRef
go back to reference Leduc, M., et al., 2019, The ClimEx project: A 50-member ensemble of climate change projections at 12 km resolution over Europe and Northeastern North America with the Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol. and Climatol., https://doi.org/10.1175/JAMC-D-18-0021.1. Leduc, M., et al., 2019, The ClimEx project: A 50-member ensemble of climate change projections at 12 km resolution over Europe and Northeastern North America with the Canadian Regional Climate Model (CRCM5), J. Appl. Meteorol. and Climatol., https://​doi.​org/​10.​1175/​JAMC-D-18-0021.​1.
go back to reference Nakamura, T., et al., 2016, The stratospheric pathway for Arctic impacts on midlatitude climate, Geophys. Res. Lett., 43, 3494–3501.ADSCrossRef Nakamura, T., et al., 2016, The stratospheric pathway for Arctic impacts on midlatitude climate, Geophys. Res. Lett., 43, 3494–3501.ADSCrossRef
go back to reference Overland, J., et al., Nonlinear response of mid-latitude weather to the changing Arctic, Nature Climate Change, 2016, 6, 992–999. Overland, J., et al., Nonlinear response of mid-latitude weather to the changing Arctic, Nature Climate Change, 2016, 6, 992–999.
go back to reference Sempf, M., et al., 2007a, Towards understanding the dynamical origin of atmospheric regime behaviorin a baroclinic model, J. Atmos. Sci., 64, 887–904.ADSCrossRef Sempf, M., et al., 2007a, Towards understanding the dynamical origin of atmospheric regime behaviorin a baroclinic model, J. Atmos. Sci., 64, 887–904.ADSCrossRef
go back to reference Sempf, M., et al., 2007b, Circulation regimes due to attractor merging in atmospheric models, J. Atmos.Sci., 64, 2029–2044.ADSCrossRef Sempf, M., et al., 2007b, Circulation regimes due to attractor merging in atmospheric models, J. Atmos.Sci., 64, 2029–2044.ADSCrossRef
go back to reference Taylor, K. E., et al., 2012, An overview of CMIP5 and the experiment design, Bull. A. Meteorol. Soc., 93, 485–498.ADSCrossRef Taylor, K. E., et al., 2012, An overview of CMIP5 and the experiment design, Bull. A. Meteorol. Soc., 93, 485–498.ADSCrossRef
go back to reference Trentini von, F., et al., 2019, Asessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble, Clim. Dyn., 53, 1963–1979.CrossRef Trentini von, F., et al., 2019, Asessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble, Clim. Dyn., 53, 1963–1979.CrossRef
go back to reference Wegmann, M., et al., 2018, Warm Arctic−cold Siberia: comparing the recent and the early 20th-century Arctic warmings, Env. Res. Lett. 13, 025009. Wegmann, M., et al., 2018, Warm Arctic−cold Siberia: comparing the recent and the early 20th-century Arctic warmings, Env. Res. Lett. 13, 025009.
Metadata
Title
Arktische Schmelze und Zukunft des Meereises
Author
Klaus Dethloff
Copyright Year
2022
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-64900-8_8