Skip to main content
Top

2024 | OriginalPaper | Chapter

Artificial Intelligence and Crowdsourced Social Media Data for Biodiversity Monitoring and Conservation

Authors : Nathan Fox, Enrico Di Minin, Neil Carter, Sabina Tomkins, Derek Van Berkel

Published in: Advancements in Architectural, Engineering, and Construction Research and Practice

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Environmental resilience is intrinsically tied to the conservation and promotion of biodiversity at multiple scales, spanning from local ecosystems to the global biosphere. Biodiversity assumes a pivotal role in the capacity of ecosystems to endure and recuperate from diverse perturbations. Human-induced stressors are causing unprecedented losses to biodiversity. Preventing and reversing the global biodiversity crisis necessitates targeted conservation endeavors, yet monitoring efforts are expensive, and conservation resources are limited. This lack of information on biodiversity statuses and trends may obscure population declines and potential extinctions. As a result, there is a pressing need for cost-effective and scalable solutions to monitor biodiversity. Here, we carried out a systematic literature review focusing on the use of artificial intelligence (AI) methods to assess social media data for biodiversity and conservation, identifying 32 articles. Our review focused on capturing which AI approaches were used, and where relevant how studies used multiple AI methodologies for a multimodal approach. Our results highlight significant recent developments in computer vision, natural language programming, and spatial analysis, and discuss their exciting applications to big data from social media for biodiversity monitoring, which hitherto have been underexplored. Social media uniquely allows for multimodal analysis offering a rich understanding of conservation issues by combining multiple data types, such as audio, video, and text. Compared to previous ecological research harnessing AI and social media, a multimodal approach offers additional insight relevant to biodiversity monitoring, including tracking the changes in timing and distribution patterns of biodiversity events and identifying areas affected by invasive species. By harnessing the capabilities of computer vision, natural language processing, and spatial–temporal analysis, we can unlock valuable insights from social media posts and guide conservation strategies for enhancing environmental resilience in an efficient and scalable manner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allain SJ (2019) Mining flickr: a method for expanding the known distribution of invasive species. Herpetol Bull 148(Summer 2019):11–4 Allain SJ (2019) Mining flickr: a method for expanding the known distribution of invasive species. Herpetol Bull 148(Summer 2019):11–4
go back to reference August TA, Pescott OL, Joly A, Bonnet P (2020) AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns 1(7) August TA, Pescott OL, Joly A, Bonnet P (2020) AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns 1(7)
go back to reference Barve V (2014) Discovering and developing primary biodiversity data from social networking sites: a novel approach. Eco Inform 24:194–199CrossRef Barve V (2014) Discovering and developing primary biodiversity data from social networking sites: a novel approach. Eco Inform 24:194–199CrossRef
go back to reference Becken S, Stantic B, Chen J, Alaei AR, Connolly RM (2017) Monitoring the environment and human sentiment on the Great Barrier Reef: assessing the potential of collective sensing. J Environ Manage 203:87–97CrossRef Becken S, Stantic B, Chen J, Alaei AR, Connolly RM (2017) Monitoring the environment and human sentiment on the Great Barrier Reef: assessing the potential of collective sensing. J Environ Manage 203:87–97CrossRef
go back to reference Chambers JC, Allen CR, Cushman SA (2019) Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front Ecol Evol 7:241CrossRef Chambers JC, Allen CR, Cushman SA (2019) Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front Ecol Evol 7:241CrossRef
go back to reference Di Minin E, Fink C, Tenkanen H, Hiippala T (2018) Machine learning for tracking illegal wildlife trade on social media. Nat Ecol & Evol 2(3):406–407CrossRef Di Minin E, Fink C, Tenkanen H, Hiippala T (2018) Machine learning for tracking illegal wildlife trade on social media. Nat Ecol & Evol 2(3):406–407CrossRef
go back to reference Di Minin E, Fink C, Hausmann A, Kremer J, Kulkarni R (2021) How to address data privacy concerns when using social media data in conservation science. Conserv Biol 35(2):437–446CrossRef Di Minin E, Fink C, Hausmann A, Kremer J, Kulkarni R (2021) How to address data privacy concerns when using social media data in conservation science. Conserv Biol 35(2):437–446CrossRef
go back to reference Feddema K, Harrigan P, Wang S (2021) The dark side of social media engagement: an analysis of user-generated content in online wildlife trade communities. Australas J Inf Syst 25 Feddema K, Harrigan P, Wang S (2021) The dark side of social media engagement: an analysis of user-generated content in online wildlife trade communities. Australas J Inf Syst 25
go back to reference Fox N, August T, Mancini F, Parks KE, Eigenbrod F, Bullock JM, Graham LJ (2020) “photosearcher” package in R: an accessible and reproducible method for harvesting large datasets from Flickr. SoftwareX 12:100624CrossRef Fox N, August T, Mancini F, Parks KE, Eigenbrod F, Bullock JM, Graham LJ (2020) “photosearcher” package in R: an accessible and reproducible method for harvesting large datasets from Flickr. SoftwareX 12:100624CrossRef
go back to reference Ghermandi A, Langemeyer J, Van Berkel D, Calcagni F, Depietri Y, Vigl LE, Wood SA (2023) Social media data for environmental sustainability: a critical review of opportunities, threats, and ethical use. One Earth 6(3):236–250CrossRef Ghermandi A, Langemeyer J, Van Berkel D, Calcagni F, Depietri Y, Vigl LE, Wood SA (2023) Social media data for environmental sustainability: a critical review of opportunities, threats, and ethical use. One Earth 6(3):236–250CrossRef
go back to reference Gosal AS, Ziv G (2020) Landscape aesthetics: Spatial modelling and mapping using social media images and machine learning. Ecol Ind 117:106638CrossRef Gosal AS, Ziv G (2020) Landscape aesthetics: Spatial modelling and mapping using social media images and machine learning. Ecol Ind 117:106638CrossRef
go back to reference Hausmann A, Toivonen T, Fink C, Heikinheimo V, Kulkarni R, Tenkanen H, Di Minin E (2020) Understanding sentiment of national park visitors from social media data. People Nat 2(3):750–760CrossRef Hausmann A, Toivonen T, Fink C, Heikinheimo V, Kulkarni R, Tenkanen H, Di Minin E (2020) Understanding sentiment of national park visitors from social media data. People Nat 2(3):750–760CrossRef
go back to reference Jeawak SS, Jones CB, Schockaert S (2020) Predicting the environment from social media: a collective classification approach. Comput Environ Urban Syst 82:101487CrossRef Jeawak SS, Jones CB, Schockaert S (2020) Predicting the environment from social media: a collective classification approach. Comput Environ Urban Syst 82:101487CrossRef
go back to reference Jeawak S, Jones CB, Schockaert S (2017) Using Flickr for characterizing the environment: an exploratory analysis Jeawak S, Jones CB, Schockaert S (2017) Using Flickr for characterizing the environment: an exploratory analysis
go back to reference Kulkarni R, Di Minin E (2021) Automated retrieval of information on threatened species from online sources using machine learning. Methods Ecol Evol 12(7):1226–1239CrossRef Kulkarni R, Di Minin E (2021) Automated retrieval of information on threatened species from online sources using machine learning. Methods Ecol Evol 12(7):1226–1239CrossRef
go back to reference Kulkarni R, Di Minin E (2023) Towards automatic detection of wildlife trade using machine vision models. Biol Cons 279:109924CrossRef Kulkarni R, Di Minin E (2023) Towards automatic detection of wildlife trade using machine vision models. Biol Cons 279:109924CrossRef
go back to reference Nunes JAC, Cruz IC, Nunes A, Pinheiro HT (2020) Speeding up coral reef conservation with AI-aided automated image analysis. Nature Machine Intelligence 2(6):292–292CrossRef Nunes JAC, Cruz IC, Nunes A, Pinheiro HT (2020) Speeding up coral reef conservation with AI-aided automated image analysis. Nature Machine Intelligence 2(6):292–292CrossRef
go back to reference Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRef Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRef
go back to reference Rocha HF, Nascimento LS, Camargo L, Noernberg M, Hara CS (2023) Labeling portuguese man-of-war posts collected from instagram. In: European conference on advances in databases and information systems. Springer Nature Switzerland, Cham, pp 369–381 Rocha HF, Nascimento LS, Camargo L, Noernberg M, Hara CS (2023) Labeling portuguese man-of-war posts collected from instagram. In: European conference on advances in databases and information systems. Springer Nature Switzerland, Cham, pp 369–381
go back to reference Sayer J, Sheil D, Galloway G, Riggs RA, Mewett G, MacDicken KG, Edwards DP (2019) SDG 15 Life on land–the central role of forests in sustainable development. In: Sustainable development goals: their impacts on forest and people. Cambridge University Press, pp 482–509 Sayer J, Sheil D, Galloway G, Riggs RA, Mewett G, MacDicken KG, Edwards DP (2019) SDG 15 Life on land–the central role of forests in sustainable development. In: Sustainable development goals: their impacts on forest and people. Cambridge University Press, pp 482–509
go back to reference Schirpke U, Ghermandi A, Sinclair M, Van Berkel D, Fox N, Vargas L, Willemen L (2023) Emerging technologies for assessing ecosystem services: a synthesis of opportunities and challenges. Ecosyst Serv 63:101558CrossRef Schirpke U, Ghermandi A, Sinclair M, Van Berkel D, Fox N, Vargas L, Willemen L (2023) Emerging technologies for assessing ecosystem services: a synthesis of opportunities and challenges. Ecosyst Serv 63:101558CrossRef
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press
go back to reference Toivonen T, Heikinheimo V, Fink C, Hausmann A, Hiippala T, Järv O, Di Minin E (2019) Social media data for conservation science: a methodological overview. Biol Cons 233:298–315CrossRef Toivonen T, Heikinheimo V, Fink C, Hausmann A, Hiippala T, Järv O, Di Minin E (2019) Social media data for conservation science: a methodological overview. Biol Cons 233:298–315CrossRef
go back to reference Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Berger-Wolf T (2022) Perspectives in machine learning for wildlife conservation. Nat Commun 13(1):792CrossRef Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Berger-Wolf T (2022) Perspectives in machine learning for wildlife conservation. Nat Commun 13(1):792CrossRef
go back to reference Walden-Schreiner C, Leung YF, Tateosian L (2018) Digital footprints: incorporating crowdsourced geographic information for protected area management. Appl Geogr 90:44–54CrossRef Walden-Schreiner C, Leung YF, Tateosian L (2018) Digital footprints: incorporating crowdsourced geographic information for protected area management. Appl Geogr 90:44–54CrossRef
go back to reference Wood SA, Guerry AD, Silver JM, Lacayo M (2013) Using social media to quantify nature-based tourism and recreation. Sci Rep 3(1):2976CrossRef Wood SA, Guerry AD, Silver JM, Lacayo M (2013) Using social media to quantify nature-based tourism and recreation. Sci Rep 3(1):2976CrossRef
Metadata
Title
Artificial Intelligence and Crowdsourced Social Media Data for Biodiversity Monitoring and Conservation
Authors
Nathan Fox
Enrico Di Minin
Neil Carter
Sabina Tomkins
Derek Van Berkel
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59329-1_4