Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Artificial Intelligence and Internet of Things for Autonomous Vehicles

Authors : Hamid Khayyam, Bahman Javadi, Mahdi Jalili, Reza N. Jazar

Published in: Nonlinear Approaches in Engineering Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Artificial Intelligence (AI) is a machine intelligence tool providing enormous possibilities for smart industrial revolution. Internet of Things (IoT) is the axiom of industry 4.0 revolution, including a worldwide infrastructure for collecting and processing of the data/information from storage, actuation, sensing, advanced services and communication technologies. The combination of high-speed, resilient, low-latency connectivity, and technologies of AI and IoT will enable the transformation towards fully smart Autonomous Vehicle (AV) that illustrate the complementary between real world and digital knowledge for industry 4.0. The purpose of this articla is to examine how the latest approaches in AI and IoT can assist in the search for the Autonomous Vehicles. It has been shown that human errors are the source of 90% of automotive crashes, and the safest drivers drive ten times better than the average (Wu et al. Accident Analysis and Prevention, 117, 21–31, 2018). The automated vehicle safety is significant, and users are requiring 1000 times smaller acceptable risk level. Some of the incredible benefits of AVs are: (1) increasing vehicle safety, (2) reduction of accidents, (3) reduction of fuel consumption, (4) releasing of driver time and business opportunities, (5) new potential market opportunities, and (6) reduced emissions and dust particles. However, AVs must use large-scale data/information from their sensors and devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu, K.-F., Sasidharan, L., Thorc, C. P., & Chena, S.-Y. (2018). Crash sequence based risk matrix for motorcycle crashes. Accident Analysis and Prevention, 117, 21–31.CrossRef Wu, K.-F., Sasidharan, L., Thorc, C. P., & Chena, S.-Y. (2018). Crash sequence based risk matrix for motorcycle crashes. Accident Analysis and Prevention, 117, 21–31.CrossRef
2.
go back to reference Sherif, A. B. T. (2017). Privacy-preserving ride sharing scheme for autonomous vehicles in big data era. IEEE Internet of Things Journal, 4, 611–618.CrossRef Sherif, A. B. T. (2017). Privacy-preserving ride sharing scheme for autonomous vehicles in big data era. IEEE Internet of Things Journal, 4, 611–618.CrossRef
3.
go back to reference Xu, W. (2018). Internet of vehicles in big data era. IEEE/CAA Journal of Automatica Sinica, 5, 19–35.CrossRef Xu, W. (2018). Internet of vehicles in big data era. IEEE/CAA Journal of Automatica Sinica, 5, 19–35.CrossRef
5.
go back to reference Lin, P.-H., Wooders, A., Wang, J. T.-Y., & Yuan, W. M. (2018). Artificial intelligence, the missing piece of online education? IEEE Engineering Management Review, 46, 25–28.CrossRef Lin, P.-H., Wooders, A., Wang, J. T.-Y., & Yuan, W. M. (2018). Artificial intelligence, the missing piece of online education? IEEE Engineering Management Review, 46, 25–28.CrossRef
7.
go back to reference Elsayed, G. F., et al. (2018). Adversarial examples that fool both computer vision and time-limited humans. Cornell University, arXiv:1802.08195v3. Elsayed, G. F., et al. (2018). Adversarial examples that fool both computer vision and time-limited humans. Cornell University, arXiv:1802.08195v3.
8.
go back to reference McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. Natick: A.K. Peters Ltd. McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. Natick: A.K. Peters Ltd.
9.
go back to reference Sutton, R. S., & Barto, A. G. (2014). Reinforcement learning: An introduction. Cambridge: The MIT Press.MATH Sutton, R. S., & Barto, A. G. (2014). Reinforcement learning: An introduction. Cambridge: The MIT Press.MATH
10.
go back to reference Szepesvári, C. (2009). Algorithms for reinforcement learning. San Rafael: Morgan & Claypool Publishers.MATH Szepesvári, C. (2009). Algorithms for reinforcement learning. San Rafael: Morgan & Claypool Publishers.MATH
11.
go back to reference Kusy, M., & Zajdel, R. (2015). Application of reinforcement learning algorithms for the adaptive computation of the smoothing parameter for probabilistic neural network. IEEE Transactions on Neural Networks and Learning Systems, 26, 2163–2175.MathSciNetCrossRef Kusy, M., & Zajdel, R. (2015). Application of reinforcement learning algorithms for the adaptive computation of the smoothing parameter for probabilistic neural network. IEEE Transactions on Neural Networks and Learning Systems, 26, 2163–2175.MathSciNetCrossRef
12.
go back to reference Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH
13.
go back to reference Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3–4), 219–354.CrossRef Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3–4), 219–354.CrossRef
14.
go back to reference Li, L., Lv, Y., & Wang, F.-Y. (2016). Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 3, 247–254.MathSciNetCrossRef Li, L., Lv, Y., & Wang, F.-Y. (2016). Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 3, 247–254.MathSciNetCrossRef
17.
18.
go back to reference Marzbani, H., Khayyam, H., To, C. N., Voquoc, D., & Jazar, R. N. (2019). Autonomous vehicles, autodriver algorithm, and vehicle dynamics. IEEE Transactions on Vehicular Technology, 68(4), 3201–3211.CrossRef Marzbani, H., Khayyam, H., To, C. N., Voquoc, D., & Jazar, R. N. (2019). Autonomous vehicles, autodriver algorithm, and vehicle dynamics. IEEE Transactions on Vehicular Technology, 68(4), 3201–3211.CrossRef
19.
go back to reference To, C., Quốc, D., Simic, M., Khayyam, H., & Jazar, R. (2018). Autodriver autonomous vehicles control strategy. Procedia Computer Science, 126, 870–877.CrossRef To, C., Quốc, D., Simic, M., Khayyam, H., & Jazar, R. (2018). Autodriver autonomous vehicles control strategy. Procedia Computer Science, 126, 870–877.CrossRef
20.
go back to reference Jazar, R. N. (2018). Vehicle dynamics: Theory and application. New York: Springer. Jazar, R. N. (2018). Vehicle dynamics: Theory and application. New York: Springer.
21.
22.
go back to reference Rubaiyat, A. H. M., Fallah, Y., Li, X., Bansal, G., & Infotechnology, T. (2018). Multi-sensor data fusion for vehicle detection in autonomous vehicle applications. Electronic Imaging, Autonomous Vehicles and Machines, 6, 257–267. Rubaiyat, A. H. M., Fallah, Y., Li, X., Bansal, G., & Infotechnology, T. (2018). Multi-sensor data fusion for vehicle detection in autonomous vehicle applications. Electronic Imaging, Autonomous Vehicles and Machines, 6, 257–267.
23.
go back to reference Kocić, J., Jovičić, N., & Drndarević, V. (2018). Sensors and sensor fusion in autonomous vehicles. In 26th Telecommunications forum TELFOR. Kocić, J., Jovičić, N., & Drndarević, V. (2018). Sensors and sensor fusion in autonomous vehicles. In 26th Telecommunications forum TELFOR.
24.
go back to reference Loebis, D., Sutton, R., & Chudley, J. (2002). Review of multisensor data fusion techniques and their application to autonomous underwater vehicle navigation. Journal of Marine Engineering and Technology, 1, 3–14.CrossRef Loebis, D., Sutton, R., & Chudley, J. (2002). Review of multisensor data fusion techniques and their application to autonomous underwater vehicle navigation. Journal of Marine Engineering and Technology, 1, 3–14.CrossRef
25.
go back to reference Viegas, P. B., Oliveira, P., & Silvestre, C. (2018). Discrete-time distributed Kalman filter design for formations of autonomous vehicles. Control Engineering Practice, 75, 55–68.CrossRef Viegas, P. B., Oliveira, P., & Silvestre, C. (2018). Discrete-time distributed Kalman filter design for formations of autonomous vehicles. Control Engineering Practice, 75, 55–68.CrossRef
26.
go back to reference Hardt, P. E., Duda, R. O., & Stork, D. G. (2001). Pattern classification. New York: Wiley.MATH Hardt, P. E., Duda, R. O., & Stork, D. G. (2001). Pattern classification. New York: Wiley.MATH
27.
go back to reference Kong, Y., & Guo, S. (2006). Urban traffic controller using fuzzy neural network and multisensors data fusion. International Conference on Information Acquisition, 2006, 404–409. Kong, Y., & Guo, S. (2006). Urban traffic controller using fuzzy neural network and multisensors data fusion. International Conference on Information Acquisition, 2006, 404–409.
28.
go back to reference Starzacher, A. (2010). Multi-sensor real-time data fusion on embedded computing platforms. Klagenfurt: Alpen-Adria-Universitat Klagenfurt Fakultat fur Technische Wissenschaften. Starzacher, A. (2010). Multi-sensor real-time data fusion on embedded computing platforms. Klagenfurt: Alpen-Adria-Universitat Klagenfurt Fakultat fur Technische Wissenschaften.
33.
go back to reference Crawford, B., Khayyam, H., Milani, A. S., & Jazar, R. (2019). Big data modelling approaches for engineering applications. In R. N. Jazar (Ed.), Nonlinear approaches in engineering applications. New York: Springer. Crawford, B., Khayyam, H., Milani, A. S., & Jazar, R. (2019). Big data modelling approaches for engineering applications. In R. N. Jazar (Ed.), Nonlinear approaches in engineering applications. New York: Springer.
34.
go back to reference Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.CrossRef Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29, 1645–1660.CrossRef
35.
go back to reference Javadi, B., Calheiros, R. N., Matawie, K. M., Ginige, A., & Cook, A. (2018). Smart nutrition monitoring system using heterogeneous internet of things platform. In G. Fortino, A. B. M. S. Ali, M. Pathan, A. Guerrieri, & G. Di Fatta (Eds.), Internet and distributed computing systems (pp. 63–74). Fiji: Springer.CrossRef Javadi, B., Calheiros, R. N., Matawie, K. M., Ginige, A., & Cook, A. (2018). Smart nutrition monitoring system using heterogeneous internet of things platform. In G. Fortino, A. B. M. S. Ali, M. Pathan, A. Guerrieri, & G. Di Fatta (Eds.), Internet and distributed computing systems (pp. 63–74). Fiji: Springer.CrossRef
36.
go back to reference Vermesan, O., et al. (2018). Automated driving progressed by internet of things. In: European Union’s Horizon 2020 Research and Innovation Programme (2014-2020), SINTEF. Vermesan, O., et al. (2018). Automated driving progressed by internet of things. In: European Union’s Horizon 2020 Research and Innovation Programme (2014-2020), SINTEF.
37.
go back to reference Mehdipour, F., Javadi, B., & Mahanti, A. (2016). FOG-engine: Towards Big data analytics in the fog. In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Internarional Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 640–646. Mehdipour, F., Javadi, B., & Mahanti, A. (2016). FOG-engine: Towards Big data analytics in the fog. In 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Internarional Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 640–646.
38.
go back to reference Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50, 30–39.CrossRef Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50, 30–39.CrossRef
39.
go back to reference Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 98, 27–42.CrossRef Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 98, 27–42.CrossRef
40.
go back to reference Mehdipour, F., Javadi, B., Mahanti, A., & Ramirez-Prado, G. (2019). Fog computing realization for big data analytics. In Fog and edge computing: Principles and paradigms (pp. 259–290). New York: Wiley.CrossRef Mehdipour, F., Javadi, B., Mahanti, A., & Ramirez-Prado, G. (2019). Fog computing realization for big data analytics. In Fog and edge computing: Principles and paradigms (pp. 259–290). New York: Wiley.CrossRef
Metadata
Title
Artificial Intelligence and Internet of Things for Autonomous Vehicles
Authors
Hamid Khayyam
Bahman Javadi
Mahdi Jalili
Reza N. Jazar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-18963-1_2

Premium Partner