Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

6. Artificial Intelligence and Machine Learning in Manufacturing

Authors : Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty, Srikanta Pal

Published in: Digital Twin – Fundamental Concepts to Applications in Advanced Manufacturing

Publisher: Springer International Publishing

Abstract

The diagnosis of manufacturing processes and systems, prediction of machine health for corrective measures are mainly achieved through various machine learning techniques. In the previous chapters, discussions were held around the signal and image processing techniques, using which meaningful information was gathered from the raw data. The results are validated by correlating with the experiments.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
2.
go back to reference Schintler LA, McNeely CL (2020) Encyclopedia of Big Data. Springer International Publishing, Cham CrossRef Schintler LA, McNeely CL (2020) Encyclopedia of Big Data. Springer International Publishing, Cham CrossRef
9.
go back to reference Maddala GS (1992) Introduction to econometrics II. Macmillan Publishing Company Maddala GS (1992) Introduction to econometrics II. Macmillan Publishing Company
10.
go back to reference Frigo M, Johnson SG, FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP ’98 (Cat. No.98CH36181). IEEE, pp 1381–1384 Frigo M, Johnson SG, FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, ICASSP ’98 (Cat. No.98CH36181). IEEE, pp 1381–1384
12.
go back to reference Kay SM, Fundamentals of statistical signal processing: practical algorithm development Kay SM, Fundamentals of statistical signal processing: practical algorithm development
13.
go back to reference Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery—DMKD ’03. ACM Press, New York, New York, USA, p 2 Lin J, Keogh E, Lonardi S, Chiu B (2003) A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery—DMKD ’03. ACM Press, New York, New York, USA, p 2
15.
go back to reference Liggins M II, Hall D, Llinas J (2017) Handbook of multisensor data fusion. CRC Press CrossRef Liggins M II, Hall D, Llinas J (2017) Handbook of multisensor data fusion. CRC Press CrossRef
18.
go back to reference Poor HV (1994) An introduction to signal detection and estimation. Springer New York, NY Poor HV (1994) An introduction to signal detection and estimation. Springer New York, NY
19.
go back to reference Kay SM (1991) Fundamentals of statistical signal processing, vol 1. Prantice Hall Kay SM (1991) Fundamentals of statistical signal processing, vol 1. Prantice Hall
25.
go back to reference Awad M, Khanna R (2015) Machine learning. In: Efficient learning machines. Apress, Berkeley, CA, pp 1–18 Awad M, Khanna R (2015) Machine learning. In: Efficient learning machines. Apress, Berkeley, CA, pp 1–18
26.
go back to reference Ernest F-H (2008) Jess, the rule engine for the java platform Ernest F-H (2008) Jess, the rule engine for the java platform
27.
go back to reference Proctor M (2012) Drools: a rule engine for complex event processing, pp 2–2 Proctor M (2012) Drools: a rule engine for complex event processing, pp 2–2
28.
go back to reference Zalta EN (2020) The problem of induction, the stanford encyclopedia of philosophy, Spring 202. Metaphysics Research Lab, Stanford University Zalta EN (2020) The problem of induction, the stanford encyclopedia of philosophy, Spring 202. Metaphysics Research Lab, Stanford University
29.
go back to reference Magnani L (2001) Abduction, reason and science. Springer US, Boston, MA Magnani L (2001) Abduction, reason and science. Springer US, Boston, MA
33.
go back to reference Martinez GS, Sierla S, Karhela T, Vyatkin V (2018) Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018 44th annual conference of the IEEE industrial electronics society. IEEE, pp 3084–3089 Martinez GS, Sierla S, Karhela T, Vyatkin V (2018) Automatic generation of a simulation-based digital twin of an industrial process plant. In: IECON 2018 44th annual conference of the IEEE industrial electronics society. IEEE, pp 3084–3089
35.
go back to reference Pal A, Mukherjee A, P. B (2015) Model-driven development for internet of things: towards easing the concerns of application developers, pp 339–346 Pal A, Mukherjee A, P. B (2015) Model-driven development for internet of things: towards easing the concerns of application developers, pp 339–346
36.
go back to reference Dey S, Jaiswal D, Paul HS, Mukherjee A (2016) A Semantic algorithm repository and workflow designer tool: signal processing use case, pp 53–61 Dey S, Jaiswal D, Paul HS, Mukherjee A (2016) A Semantic algorithm repository and workflow designer tool: signal processing use case, pp 53–61
37.
go back to reference Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press Cambridge, Massachusetts London, England MATH Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press Cambridge, Massachusetts London, England MATH
40.
go back to reference Machine learning. http://​mlclass.​stanford.​edu/​#:~:text=What Is Machine Learning%3F,understandingofthehumangenome Machine learning. http://​mlclass.​stanford.​edu/​#:~:text=What Is Machine Learning%3F,understandingofthehumangenome
45.
go back to reference Madisetti VK, Williams DB (2018) The digital signal processing handbook, vol 3. CRC Press Madisetti VK, Williams DB (2018) The digital signal processing handbook, vol 3. CRC Press
46.
go back to reference Goodwin GC, Sin KSS adaptive filtering prediction and control Goodwin GC, Sin KSS adaptive filtering prediction and control
47.
go back to reference Simon H (1996) Adaptive filter theory. Prentice Hall, Upper Saddle River, New Jersey Simon H (1996) Adaptive filter theory. Prentice Hall, Upper Saddle River, New Jersey
48.
go back to reference Ingle VK, Kogon SM, Manolakis DG (2005) Statistical and adaptive signal processing Ingle VK, Kogon SM, Manolakis DG (2005) Statistical and adaptive signal processing
49.
go back to reference Honig ML, Messerschmitt DG, Adaptive filters: structures, algorithms and application. Springer, US Honig ML, Messerschmitt DG, Adaptive filters: structures, algorithms and application. Springer, US
50.
go back to reference Jenkins WK, Hull AW, Strait JC et al (1996) Advanced concepts in adaptive signal processing. Springer, US, Boston, MA CrossRef Jenkins WK, Hull AW, Strait JC et al (1996) Advanced concepts in adaptive signal processing. Springer, US, Boston, MA CrossRef
51.
go back to reference Pal A, Ukil A, Deb T, et al (2020) Instant adaptive learning: an adaptive filter based fast learning model construction for sensor signal time series classification on edge devices. In: ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 8339–8343 Pal A, Ukil A, Deb T, et al (2020) Instant adaptive learning: an adaptive filter based fast learning model construction for sensor signal time series classification on edge devices. In: ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 8339–8343
52.
go back to reference Liu W, Prncipe JC, Haykin S (2010) Kernel adaptive filtering. Wiley, Hoboken, NJ, USA CrossRef Liu W, Prncipe JC, Haykin S (2010) Kernel adaptive filtering. Wiley, Hoboken, NJ, USA CrossRef
55.
go back to reference Ukil A, Malhotra P, Bandyopadhyay S, et al (2019) Fusing features based on signal properties and TimeNet for time series classification. In: ESANN 2019 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning Ukil A, Malhotra P, Bandyopadhyay S, et al (2019) Fusing features based on signal properties and TimeNet for time series classification. In: ESANN 2019 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning
56.
go back to reference Ukil A, Bandyopadhyay S, Pal A (2020) Sig-R 2ResNet: residual network with signal processing-refined residual mapping, auto-tuned L 1-regularization with modified Adam optimizer for time series classification. In: 2020 international joint conference on neural networks (IJCNN). IEEE, pp 1–8 Ukil A, Bandyopadhyay S, Pal A (2020) Sig-R 2ResNet: residual network with signal processing-refined residual mapping, auto-tuned L 1-regularization with modified Adam optimizer for time series classification. In: 2020 international joint conference on neural networks (IJCNN). IEEE, pp 1–8
57.
go back to reference Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2012) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2012) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
67.
go back to reference Ukil A, Sahu I, Puri C, et al (2018) AutoModeling: integrated approach for automated model generation by ensemble selection of feature subset and classifier. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8 Ukil A, Sahu I, Puri C, et al (2018) AutoModeling: integrated approach for automated model generation by ensemble selection of feature subset and classifier. In: 2018 international joint conference on neural networks (IJCNN). IEEE, pp 1–8
68.
go back to reference Thokala NK, Kumar K, Girish Chandra M, Ravikumar K (2019) Long-term forecasting of heterogenous variables with automatic algorithm selection. pp 186–197 Thokala NK, Kumar K, Girish Chandra M, Ravikumar K (2019) Long-term forecasting of heterogenous variables with automatic algorithm selection. pp 186–197
72.
go back to reference Rajbhoj A, Deshpande S, Gubbi J, et al (2019) A system for semi-automatic construction of image processing pipeline for complex problems. pp 295–310 Rajbhoj A, Deshpande S, Gubbi J, et al (2019) A system for semi-automatic construction of image processing pipeline for complex problems. pp 295–310
73.
go back to reference Bapna A, Thokala N, Chandra MG, Kumar K (2018) Deep learning based tool wear monitoring in CNC machines. In: European conference on machine learning (ECML-PKDD workshop), Dublin, Ireland Bapna A, Thokala N, Chandra MG, Kumar K (2018) Deep learning based tool wear monitoring in CNC machines. In: European conference on machine learning (ECML-PKDD workshop), Dublin, Ireland
77.
go back to reference Banerjee A, Mishra D, Nayak P, Pal SK (2020) Low-cost real-time machine vision based quality inspection system (Filed) Banerjee A, Mishra D, Nayak P, Pal SK (2020) Low-cost real-time machine vision based quality inspection system (Filed)
79.
go back to reference Sahu S, Kumar K, Majumdar A, Chandra MG (2021) Deep transform learning for multi-sensor fusion. In: 2020 28th European signal processing conference (EUSIPCO). IEEE, pp 1996–2000 Sahu S, Kumar K, Majumdar A, Chandra MG (2021) Deep transform learning for multi-sensor fusion. In: 2020 28th European signal processing conference (EUSIPCO). IEEE, pp 1996–2000
81.
go back to reference Hegde S, Prasad R, Hebbalaguppe R, Kumar V (2019) Variational student: learning compact and sparser networks in knowledge distillation framework Hegde S, Prasad R, Hebbalaguppe R, Kumar V (2019) Variational student: learning compact and sparser networks in knowledge distillation framework
82.
go back to reference Dey S, Mukherjee A, Pal A, Balamuralidhar P (2018) Partitioning of CNN models for execution on fog devices. In: Proceedings of the 1st ACM international workshop on smart cities and fog computing. ACM, New York, NY, USA, pp 19–24 Dey S, Mukherjee A, Pal A, Balamuralidhar P (2018) Partitioning of CNN models for execution on fog devices. In: Proceedings of the 1st ACM international workshop on smart cities and fog computing. ACM, New York, NY, USA, pp 19–24
83.
go back to reference Dey S, Mukherjee A, Pal A, P B (2019) Embedded deep inference in practice. In: Proceedings of the 1st workshop on machine learning on edge in sensor systems—SenSys-ML 2019. ACM Press, New York, USA, pp 25–30 Dey S, Mukherjee A, Pal A, P B (2019) Embedded deep inference in practice. In: Proceedings of the 1st workshop on machine learning on edge in sensor systems—SenSys-ML 2019. ACM Press, New York, USA, pp 25–30
84.
go back to reference Mondal J, Dey S, Mukherjee A, et al (2019) Edge acceleration of deep neural networks (demo). In: Proceedings of the 17th annual international conference on mobile systems, applications, and services. ACM, New York, NY, USA, pp 691–692 Mondal J, Dey S, Mukherjee A, et al (2019) Edge acceleration of deep neural networks (demo). In: Proceedings of the 17th annual international conference on mobile systems, applications, and services. ACM, New York, NY, USA, pp 691–692
85.
go back to reference Dey S, Dutta J (2020) A low footprint automatic speech recognition system for resource constrained edge devices. In: Proceedings of the 2nd international workshop on challenges in artificial intelligence and machine learning for internet of things. ACM, New York, NY, USA, pp 48–54 Dey S, Dutta J (2020) A low footprint automatic speech recognition system for resource constrained edge devices. In: Proceedings of the 2nd international workshop on challenges in artificial intelligence and machine learning for internet of things. ACM, New York, NY, USA, pp 48–54
Metadata
Title
Artificial Intelligence and Machine Learning in Manufacturing
Authors
Surjya Kanta Pal
Debasish Mishra
Arpan Pal
Samik Dutta
Debashish Chakravarty
Srikanta Pal
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-81815-9_6

Premium Partners