Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 2/2021

04-11-2020 | Original Article

Artificial intelligence CT screening model for thyroid-associated ophthalmopathy and tests under clinical conditions

Authors: Xuefei Song, Zijia Liu, Lunhao Li, Zhongpai Gao, Xianqun Fan, Guangtao Zhai, Huifang Zhou

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

Thyroid-associated ophthalmopathy (TAO) might lead to blindness and orbital deformity. The early diagnosis and treatment are conducive to control disease progression, but currently, there is no effective screening method. The present study aimed to introduce an artificial intelligence (AI) model for screening and testing the model with TAO patients under clinical conditions.

Methods

A total of 1435 computed tomography (CT) scans were obtained from the hospital. These CT scans were preprocessed by resampling and extracting the region of interest. CT from 193 TAO patients and 715 healthy individuals were adopted for three-dimensional (3D)-ResNet model training, and 49 TAO patients and 178 healthy people were adopted for external verification. Data from 150 TAO patients and 150 healthy people were utilized for application tests under clinical conditions, including non-inferiority experiments and diagnostic tests, respectively.

Results

In the external verification of the model, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.919, indicating a satisfactory classification effect. The accuracy, sensitivity, and specificity were 0.87, 088, and 0.85, respectively. In non-inferiority experiments: the accuracy was 85.67% in the AI group and 84.33% in the resident group. The model passed both non-inferiority experiments (p = 0.001) and diagnostic test (the AI group sensitivity = 0.87 and specificity = 0.84%).

Conclusions

A promising orbital CT-based TAO screening AI model was established and passed application tests under clinical conditions. This may provide a new TAO screening tool with further validation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Smith TJ, Hegedüs L (2016) Graves’ disease. N Engl J Med 375(16):1552–1565CrossRef Smith TJ, Hegedüs L (2016) Graves’ disease. N Engl J Med 375(16):1552–1565CrossRef
3.
go back to reference Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM, European Group on Graves’ Orbitopathy (EUGOGO) (2016) The 2016 European thyroid association/European Group on graves’ orbitopathy guidelines for the management of Graves’ orbitopathy. Euro Thyroid J 5(1):9–26CrossRef Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM, European Group on Graves’ Orbitopathy (EUGOGO) (2016) The 2016 European thyroid association/European Group on graves’ orbitopathy guidelines for the management of Graves’ orbitopathy. Euro Thyroid J 5(1):9–26CrossRef
4.
go back to reference Bartalena L (2012) Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 26(3):371–379CrossRef Bartalena L (2012) Prevention of Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 26(3):371–379CrossRef
5.
go back to reference Russell S (2017) Artificial intelligence: the future is superintelligent. Nature 548(7669):520–521CrossRef Russell S (2017) Artificial intelligence: the future is superintelligent. Nature 548(7669):520–521CrossRef
6.
go back to reference Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223CrossRef Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223CrossRef
7.
go back to reference Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, An Y, Lin Z, Li X, Chen J, Li J, Cao Q, Wang D, Liu X, Chen W, Liu Y (2017) An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng 1(2):24CrossRef Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, An Y, Lin Z, Li X, Chen J, Li J, Cao Q, Wang D, Liu X, Chen W, Liu Y (2017) An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng 1(2):24CrossRef
8.
go back to reference van der Heijden AA, Abramoff MD, Verbraak F, van Hecke MV, Liem A, Nijpels G (2018) Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the hoorn diabetes care system. Acta Ophthalmol 96(1):63–68CrossRef van der Heijden AA, Abramoff MD, Verbraak F, van Hecke MV, Liem A, Nijpels G (2018) Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the hoorn diabetes care system. Acta Ophthalmol 96(1):63–68CrossRef
9.
go back to reference Griffin AS, Hoang JK, Malinzak MD (2018) CT and MRI of the orbit. Int Ophthalmol Clin 58(2):25–59CrossRef Griffin AS, Hoang JK, Malinzak MD (2018) CT and MRI of the orbit. Int Ophthalmol Clin 58(2):25–59CrossRef
10.
go back to reference Tortora F, Cirillo M, Ferrara M, Belfiore MP, Carella C, Caranci F, Cirillo S (2013) Disease activity in Graves’ ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score. Neuroradiol J 26(5):555–564CrossRef Tortora F, Cirillo M, Ferrara M, Belfiore MP, Carella C, Caranci F, Cirillo S (2013) Disease activity in Graves’ ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score. Neuroradiol J 26(5):555–564CrossRef
11.
go back to reference Mayer E, Fox D, Herdman G, Hsuan J, Kabala J, Goddard P, Potts MJ, Lee RW (2005) Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease. Eur J Radiol 56(1):20–24CrossRef Mayer E, Fox D, Herdman G, Hsuan J, Kabala J, Goddard P, Potts MJ, Lee RW (2005) Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease. Eur J Radiol 56(1):20–24CrossRef
12.
go back to reference Kim HC, Yoon SW, Lew H (2015) Usefulness of the ratio of orbital fat to total orbit area in mild-to-moderate thyroid-associated ophthalmopathy. Br J Radiol 88(1053):20150164CrossRef Kim HC, Yoon SW, Lew H (2015) Usefulness of the ratio of orbital fat to total orbit area in mild-to-moderate thyroid-associated ophthalmopathy. Br J Radiol 88(1053):20150164CrossRef
13.
go back to reference Byun JS, Moon NJ, Lee JK (2017) Quantitative analysis of orbital soft tissues on computed tomography to assess the activity of thyroid-associated orbitopathy. Graefes Arch Clin Exp Ophthalmol 255(2):413–420CrossRef Byun JS, Moon NJ, Lee JK (2017) Quantitative analysis of orbital soft tissues on computed tomography to assess the activity of thyroid-associated orbitopathy. Graefes Arch Clin Exp Ophthalmol 255(2):413–420CrossRef
14.
go back to reference Le Moli R, Pluchino A, Muscia V, Regalbuto C, Luciani B, Squatrito S, Vigneri R (2012) Graves’ orbitopathy: extraocular muscle/total orbit area ratio is positively related to the clinical activity score. Eur J Ophthalmol 22(3):301–308CrossRef Le Moli R, Pluchino A, Muscia V, Regalbuto C, Luciani B, Squatrito S, Vigneri R (2012) Graves’ orbitopathy: extraocular muscle/total orbit area ratio is positively related to the clinical activity score. Eur J Ophthalmol 22(3):301–308CrossRef
15.
go back to reference Lin H, Lin D, Liu Z, Long E, Wu X, Cao Q, Chen J, Lin Z, Li X, Zhang L, Chen H, Zhang X, Li J, Chen W, Liu Y (2016) A novel congenital cataract category system based on lens opacity locations and relevant anterior segment characteristics. Invest Ophthalmol Vis Sci 57(14):6389–6395CrossRef Lin H, Lin D, Liu Z, Long E, Wu X, Cao Q, Chen J, Lin Z, Li X, Zhang L, Chen H, Zhang X, Li J, Chen W, Liu Y (2016) A novel congenital cataract category system based on lens opacity locations and relevant anterior segment characteristics. Invest Ophthalmol Vis Sci 57(14):6389–6395CrossRef
18.
go back to reference Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31–40CrossRef Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31–40CrossRef
19.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778
20.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp. 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. pp. 1097–1105
21.
24.
go back to reference Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2921–2929 Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2921–2929
25.
go back to reference Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HC, Bossuyt PM (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6(11):e012799CrossRef Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB, de Vet HC, Bossuyt PM (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6(11):e012799CrossRef
26.
go back to reference Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, Lin Z, Lai W, Long E, Wu X, Lin D, Zhu Y, Chen C, Wu D, Yu T, Cao Q, Li X, Li J, Li W, Wang J, Yang M, Hu H, Zhang L, Yu Y, Chen X, Hu J, Zhu K, Jiang S, Huang Y, Tan G, Huang J, Lin X, Zhang X, Luo L, Liu Y, Liu X, Cheng B, Zheng D, Wu M, Chen W, Liu Y (2019) Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 17(9):52–59CrossRef Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, Lin Z, Lai W, Long E, Wu X, Lin D, Zhu Y, Chen C, Wu D, Yu T, Cao Q, Li X, Li J, Li W, Wang J, Yang M, Hu H, Zhang L, Yu Y, Chen X, Hu J, Zhu K, Jiang S, Huang Y, Tan G, Huang J, Lin X, Zhang X, Luo L, Liu Y, Liu X, Cheng B, Zheng D, Wu M, Chen W, Liu Y (2019) Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 17(9):52–59CrossRef
27.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF, STARDGroup (2015) An updated list of essential items for reporting diagnostic accuracy studies. Radiology 277(3):826–832CrossRef Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF, STARDGroup (2015) An updated list of essential items for reporting diagnostic accuracy studies. Radiology 277(3):826–832CrossRef
28.
go back to reference Althunian TA, de Boer A, Groenwold RHH, Klungel OH (2017) Defining the non-inferiority margin and analysing non-inferiority: an overview. Br J Clin Pharmacol 83(8):1636–1642CrossRef Althunian TA, de Boer A, Groenwold RHH, Klungel OH (2017) Defining the non-inferiority margin and analysing non-inferiority: an overview. Br J Clin Pharmacol 83(8):1636–1642CrossRef
29.
go back to reference Homma G, Daimon T (2019) Sequential parallel comparison design for “gold standard” non-inferiority trials with a prespecified margin. Biom J 61(6):1493–1506CrossRef Homma G, Daimon T (2019) Sequential parallel comparison design for “gold standard” non-inferiority trials with a prespecified margin. Biom J 61(6):1493–1506CrossRef
Metadata
Title
Artificial intelligence CT screening model for thyroid-associated ophthalmopathy and tests under clinical conditions
Authors
Xuefei Song
Zijia Liu
Lunhao Li
Zhongpai Gao
Xianqun Fan
Guangtao Zhai
Huifang Zhou
Publication date
04-11-2020
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 2/2021
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-020-02281-1

Other articles of this Issue 2/2021

International Journal of Computer Assisted Radiology and Surgery 2/2021 Go to the issue

Premium Partner