Skip to main content
Top
Published in:

30-01-2022 | Research Article

Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment

Authors: Manal Abdullah Alohali, Fahd N. Al-Wesabi, Anwer Mustafa Hilal, Shalini Goel, Deepak Gupta, Ashish Khanna

Published in: Cognitive Neurodynamics | Issue 5/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent days, Cognitive Cyber-Physical System (CCPS) has gained significant interest among interdisciplinary researchers which integrates machine learning (ML) and artificial intelligence (AI) techniques. This era is witnessing a rapid transformation in digital technology and AI where brain-inspired computing-based solutions will play a vital role in industrial informatics. The application of CCPS with brain-inspired computing in Industry 4.0 will create a significant impact on industrial evolution. Though the CCPSs in industrial environment offer several merits, security remains a challenging design issue. The rise of artificial intelligence AI techniques helps to address cybersecurity issues related to CCPS in industry 4.0 environment. With this motivation, this paper presents a new AI-enabled multimodal fusion-based intrusion detection system (AIMMF-IDS) for CCPS in industry 4.0 environment. The proposed model initially performs the data pre-processing technique in two ways namely data conversion and data normalization. In addition, improved fish swarm optimization based feature selection (IFSO-FS) technique is used for the appropriate selection of features. The IFSO technique is derived by the use of Levy Flight (LF) concept into the searching mechanism of the conventional FSO algorithm to avoid the local optima problem. Since the single modality is not adequate to accomplish enhanced detection performance, in this paper, a weighted voting based ensemble model is employed for the multimodal fusion process using recurrent neural network (RNN), bi-directional long short term memory (Bi-LSTM), and deep belief network (DBN), depicts the novelty of the work. The simulation analysis of the presented model highlighted the improved performance over the recent state of art techniques interms of different measures.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aiello G, Giallanza A, Vacante S, Fasoli S, Mascarella G (2020) Propulsion monitoring system for digitized ship management: preliminary results from a case study. Proc Manuf 42:16–23 Aiello G, Giallanza A, Vacante S, Fasoli S, Mascarella G (2020) Propulsion monitoring system for digitized ship management: preliminary results from a case study. Proc Manuf 42:16–23
go back to reference Aljehane NO (2021) A secure intrusion detection system in cyberphysical systems using a parameter-tuned deep-stacked autoencoder. CMC-Comput Mater Cont 68(3):3915–3929 Aljehane NO (2021) A secure intrusion detection system in cyberphysical systems using a parameter-tuned deep-stacked autoencoder. CMC-Comput Mater Cont 68(3):3915–3929
go back to reference Althobaiti MM, Kumar KPM, Gupta D, Kumar S, Mansour RF (2021) An intelligent cognitive computing based intrusion detection for industrial cyber-physical systems. Measurement 186:110145CrossRef Althobaiti MM, Kumar KPM, Gupta D, Kumar S, Mansour RF (2021) An intelligent cognitive computing based intrusion detection for industrial cyber-physical systems. Measurement 186:110145CrossRef
go back to reference Dabba A, Tari A, Zouache D (2020) Multiobjective artificial fish swarm algorithm for multiple sequence alignment. INFOR Inform Syst Oper Res 58(1):38–59 Dabba A, Tari A, Zouache D (2020) Multiobjective artificial fish swarm algorithm for multiple sequence alignment. INFOR Inform Syst Oper Res 58(1):38–59
go back to reference de Araujo-Filho PF, Kaddoum G, Campelo DR, Santos AG, Macêdo D, Zanchettin C (2020) Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J 8(8):6247–6256CrossRef de Araujo-Filho PF, Kaddoum G, Campelo DR, Santos AG, Macêdo D, Zanchettin C (2020) Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment. IEEE Internet Things J 8(8):6247–6256CrossRef
go back to reference De Sousa Jabbour ABL, Jabbour CJC, Foropon C, Filho MG (2018) When titans meet—can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol Forecast Soc Change 132:18–25CrossRef De Sousa Jabbour ABL, Jabbour CJC, Foropon C, Filho MG (2018) When titans meet—can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol Forecast Soc Change 132:18–25CrossRef
go back to reference Diro AA, Chilamkurti N (2018) Distributed attack detection scheme using deep learning approach for internet of things. Futur Gener Comput Syst 82(761–768):43 Diro AA, Chilamkurti N (2018) Distributed attack detection scheme using deep learning approach for internet of things. Futur Gener Comput Syst 82(761–768):43
go back to reference Djenouri Y, Belhadi A, Lin JCW et al (2019) Adapted k-nearest neighbors for detecting anomalies on spatio–temporal traffic flow. IEEE Access 7:10015–10027CrossRef Djenouri Y, Belhadi A, Lin JCW et al (2019) Adapted k-nearest neighbors for detecting anomalies on spatio–temporal traffic flow. IEEE Access 7:10015–10027CrossRef
go back to reference Jagtap SS, Subramaniyaswamy V (2021) A hypergraph based Kohonen map for detecting intrusions over cyber–physical systems traffic. Fut Gen Comput Syst 119:84–109CrossRef Jagtap SS, Subramaniyaswamy V (2021) A hypergraph based Kohonen map for detecting intrusions over cyber–physical systems traffic. Fut Gen Comput Syst 119:84–109CrossRef
go back to reference Jia Y, Wu J, Xu M (2017) Traffic flow prediction with rainfall impact using a deep learning method. J Adv Transp 2017. Jia Y, Wu J, Xu M (2017) Traffic flow prediction with rainfall impact using a deep learning method. J Adv Transp 2017.
go back to reference Jiang JR (2018) An improved cyber-physical systems architecture for Industry 4.0 smart factories. Adv Mech Eng 10(6):1687814018784192CrossRef Jiang JR (2018) An improved cyber-physical systems architecture for Industry 4.0 smart factories. Adv Mech Eng 10(6):1687814018784192CrossRef
go back to reference Khalili A, Sami A, Khozaei A, Pouresmaeeli S (2018) SIDS: State-based intrusion detection for stage-based cyber physical systems. Int J Crit Infrastruct Protect 22:113–124CrossRef Khalili A, Sami A, Khozaei A, Pouresmaeeli S (2018) SIDS: State-based intrusion detection for stage-based cyber physical systems. Int J Crit Infrastruct Protect 22:113–124CrossRef
go back to reference Kwon S, Yoo H, Shon T (2020) IEEE 1815.1-based power system security with bidirectional RNN-based network anomalous attack detection for cyber-physical system. IEEE Access 8:77572–77586CrossRef Kwon S, Yoo H, Shon T (2020) IEEE 1815.1-based power system security with bidirectional RNN-based network anomalous attack detection for cyber-physical system. IEEE Access 8:77572–77586CrossRef
go back to reference Li X-L (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38 Li X-L (2002) An optimizing method based on autonomous animats: fish-swarm algorithm. Syst Eng Theory Pract 22(11):32–38
go back to reference Li B, Lu R, Wang W, Choo KKR (2017) Distributed host-based collaborative detection for false data injection attacks in smart grid cyber-physical system. J Parallel Distrib Comput 103:32–41CrossRef Li B, Lu R, Wang W, Choo KKR (2017) Distributed host-based collaborative detection for false data injection attacks in smart grid cyber-physical system. J Parallel Distrib Comput 103:32–41CrossRef
go back to reference Li J, Zhao Z, Li R et al (2018) AI-based two-stage intrusion detection for software defined IoT networks. IEEE Internet Things J 6(2):2093–2102CrossRef Li J, Zhao Z, Li R et al (2018) AI-based two-stage intrusion detection for software defined IoT networks. IEEE Internet Things J 6(2):2093–2102CrossRef
go back to reference Li B, Wu Y, Song J, Lu R, Li T, Zhao L (2020) DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans Ind Inform 17(8):5615–5624CrossRef Li B, Wu Y, Song J, Lu R, Li T, Zhao L (2020) DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans Ind Inform 17(8):5615–5624CrossRef
go back to reference Luo Y, Xiao Y, Cheng L, Peng G, Yao D (2021) Deep learning-based anomaly detection in cyber-physical systems: progress and opportunities. ACM Comput Surv (CSUR) 54(5):1–36CrossRef Luo Y, Xiao Y, Cheng L, Peng G, Yao D (2021) Deep learning-based anomaly detection in cyber-physical systems: progress and opportunities. ACM Comput Surv (CSUR) 54(5):1–36CrossRef
go back to reference Machado CG, Winroth MP, Ribeiro da Silva EHD (2020) Sustainable manufacturing in industry 4.0: an emerging research agenda. Int J Prod Res 58:1462–1484CrossRef Machado CG, Winroth MP, Ribeiro da Silva EHD (2020) Sustainable manufacturing in industry 4.0: an emerging research agenda. Int J Prod Res 58:1462–1484CrossRef
go back to reference Moustafa N, Adi E, Turnbull B, Hu J (2018) A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access 6:32910–32924CrossRef Moustafa N, Adi E, Turnbull B, Hu J (2018) A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access 6:32910–32924CrossRef
go back to reference Oztemel E, Gursev S (2020) Literature review of industry 4.0 and related technologies. J Intell Manuf 31:127–182CrossRef Oztemel E, Gursev S (2020) Literature review of industry 4.0 and related technologies. J Intell Manuf 31:127–182CrossRef
go back to reference Peng Z, Dong K, Yin H, Bai Y (2018) Modification of fish swarm algorithm based on levy flight and firefly behavior. Comput Intell Neurosci 2018. Peng Z, Dong K, Yin H, Bai Y (2018) Modification of fish swarm algorithm based on levy flight and firefly behavior. Comput Intell Neurosci 2018.
go back to reference Radanliev P, De Roure D, Van Kleek M, Santos O, Ani U (2020) Artificial intelligence in cyber physical systems. AI Soc 1–14. Radanliev P, De Roure D, Van Kleek M, Santos O, Ani U (2020) Artificial intelligence in cyber physical systems. AI Soc 1–14.
go back to reference Sun R (2020) Potential of full human–machine symbiosis through truly intelligent cognitive systems. AI Soc 35(1):17–28CrossRef Sun R (2020) Potential of full human–machine symbiosis through truly intelligent cognitive systems. AI Soc 35(1):17–28CrossRef
go back to reference Thakur S, Chakraborty A, De R, Kumar N, Sarkar R (2021) Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model. Comput Elect Eng 91:107044CrossRef Thakur S, Chakraborty A, De R, Kumar N, Sarkar R (2021) Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model. Comput Elect Eng 91:107044CrossRef
go back to reference Yang Y, Zheng K, Wu C et al (2019) Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks. Appl Sci 9(2):238CrossRef Yang Y, Zheng K, Wu C et al (2019) Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks. Appl Sci 9(2):238CrossRef
go back to reference Yu J, Liu G (2020) Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput Ind Stry 121:103262CrossRef Yu J, Liu G (2020) Knowledge-based deep belief network for machining roughness prediction and knowledge discovery. Comput Ind Stry 121:103262CrossRef
go back to reference Zhang Y, Zhang H, Cai J, Yang B (2014) A weighted voting classifier based on differential evolution. In: Abstract and applied analysis, vol 2014. Hindawi. Zhang Y, Zhang H, Cai J, Yang B (2014) A weighted voting classifier based on differential evolution. In: Abstract and applied analysis, vol 2014. Hindawi.
Metadata
Title
Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment
Authors
Manal Abdullah Alohali
Fahd N. Al-Wesabi
Anwer Mustafa Hilal
Shalini Goel
Deepak Gupta
Ashish Khanna
Publication date
30-01-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 5/2022
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09780-8

Other articles of this Issue 5/2022

Cognitive Neurodynamics 5/2022 Go to the issue