Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Artificial Intelligence for Drug Development

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Drugs are treated as life-saving medicines against life-threatening diseases. However, drug developments pass through very complex and closely monitored phases to ensure the safety and efficacy of the intended purpose. The efforts are to keep highly toxic drugs from reaching even clinical trials. Even after the approval for drug distribution in the market, the drug’s post-marketing safety is analyzed by the number of reported Adverse Events (AEs). It requires the analysis and interpretation of massive data in all three stages namely pre-clinical, clinical and post-marketing stages. In this article, we explore the use of Artificial Intelligence (AI) in interpreting the huge data that is generated in the pre-clinical and clinical trials for safety purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adams CP, Brantner VV (2010) Spending on new drug development 1. Health Econ 19(2):130–141 Adams CP, Brantner VV (2010) Spending on new drug development 1. Health Econ 19(2):130–141
2.
go back to reference Xia HA, Jiang Q (2014) Statistical evaluation of drug safety data. Ther Innov Regul Sci 48(1):109–120 Xia HA, Jiang Q (2014) Statistical evaluation of drug safety data. Ther Innov Regul Sci 48(1):109–120
3.
go back to reference Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 24(3):773–780 Mak K-K, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today 24(3):773–780
4.
go back to reference Lamberti MJ, Wilkinson M, Donzanti BA, Wohlhieter GE, Parikh S, Wilkins RG, Getz K (2019) A study on the application and use of artificial intelligence to support drug development. Clin Ther 41(8):1414–1426 Lamberti MJ, Wilkinson M, Donzanti BA, Wohlhieter GE, Parikh S, Wilkins RG, Getz K (2019) A study on the application and use of artificial intelligence to support drug development. Clin Ther 41(8):1414–1426
5.
go back to reference Abdul Rashid MBM (2020) Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol: Transl Life Sci Innov 20:3–15 Abdul Rashid MBM (2020) Artificial intelligence effecting a paradigm shift in drug development. SLAS Technol: Transl Life Sci Innov 20:3–15
6.
go back to reference Murphy RF (2011) An active role for machine learning in drug development. Nature Chem Biol 7(6):327–330 Murphy RF (2011) An active role for machine learning in drug development. Nature Chem Biol 7(6):327–330
7.
go back to reference Wale N (2011) Machine learning in drug discovery and development. Drug Dev Res 72(1):112–119CrossRef Wale N (2011) Machine learning in drug discovery and development. Drug Dev Res 72(1):112–119CrossRef
8.
go back to reference Meng H-Y, Jin W-L, Yan C-K, Yang H (2019) The application of machine learning techniques in clinical drug therapy. Curr Comput Aided Drug Des 15(2):111–119CrossRefPubMed Meng H-Y, Jin W-L, Yan C-K, Yang H (2019) The application of machine learning techniques in clinical drug therapy. Curr Comput Aided Drug Des 15(2):111–119CrossRefPubMed
9.
go back to reference Gunther EC, Stone DJ, Gerwien RW, Bento P, Heyes MP (2003) Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci 100(16):9608–9613 Gunther EC, Stone DJ, Gerwien RW, Bento P, Heyes MP (2003) Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro. Proc Natl Acad Sci 100(16):9608–9613
10.
go back to reference Li H, Zhang W, Chen Y, Guo Y, Li G-Z, Zhu X (2017) A novel multi-target regression framework for time-series prediction of drug efficacy. Sci Rep 7(1):1–9 Li H, Zhang W, Chen Y, Guo Y, Li G-Z, Zhu X (2017) A novel multi-target regression framework for time-series prediction of drug efficacy. Sci Rep 7(1):1–9
11.
go back to reference Silva Á, Cortez P, Santos MF, Gomes L, Neves J(2006) Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 36(3):223–234 Silva Á, Cortez P, Santos MF, Gomes L, Neves J(2006) Mortality assessment in intensive care units via adverse events using artificial neural networks. Artif Intell Med 36(3):223–234
12.
go back to reference Hohne BA, Pierce TH (1989) Expert system applications in power systems. Am Chem Soc 408 Hohne BA, Pierce TH (1989) Expert system applications in power systems. Am Chem Soc 408
13.
go back to reference Hanessian S, Franco J, Gagnon G, Laramee D, Larouche B (1990) Computer-assisted analysis and perception of stereochemical features in organic molecules using the chiron program. J Chem Inf Comput Sci 30(4):413–425CrossRef Hanessian S, Franco J, Gagnon G, Laramee D, Larouche B (1990) Computer-assisted analysis and perception of stereochemical features in organic molecules using the chiron program. J Chem Inf Comput Sci 30(4):413–425CrossRef
14.
go back to reference Hanessian S, Botta M, Larouche B, Boyaroglu A (1992) Computer-assisted perception of similarity using the chiron program: a powerful tool for the analysis and prediction of biogenetic patterns. J Chem Inf Comput Sci 32(6):718–722CrossRef Hanessian S, Botta M, Larouche B, Boyaroglu A (1992) Computer-assisted perception of similarity using the chiron program: a powerful tool for the analysis and prediction of biogenetic patterns. J Chem Inf Comput Sci 32(6):718–722CrossRef
15.
go back to reference Hanessian S (1993) Reflections on the total synthesis of natural products: art, craft, logic, and the chiron approach. Pure Appl Chem 65(6):1189–1204CrossRef Hanessian S (1993) Reflections on the total synthesis of natural products: art, craft, logic, and the chiron approach. Pure Appl Chem 65(6):1189–1204CrossRef
16.
go back to reference Wipke WT, Rogers D (1984) Artificial intelligence in organic synthesis. SST: starting material selection strategies. An application of superstructure search. J Chem Inf Comput Sci 24(2):71–81 Wipke WT, Rogers D (1984) Artificial intelligence in organic synthesis. SST: starting material selection strategies. An application of superstructure search. J Chem Inf Comput Sci 24(2):71–81
17.
go back to reference Azario P, Barone R, Chanon M (1988) Microcomputer and organic synthesis. 3. The MARSEIL/SOS expert system, a new graphic approach. An electronic lab note for organic synthesis. J Org Chem 53(4):720–724 Azario P, Barone R, Chanon M (1988) Microcomputer and organic synthesis. 3. The MARSEIL/SOS expert system, a new graphic approach. An electronic lab note for organic synthesis. J Org Chem 53(4):720–724
18.
go back to reference Mehta G, Barone R, Azario P, Barberis F, Arbelot M, Chanon M (1992) New computer-based approach for seeking a key step in the synthesis of complex structures. Application to taxane and crinipellin diterpenoid frameworks. Tetrahedron 48(41):8953–8962 Mehta G, Barone R, Azario P, Barberis F, Arbelot M, Chanon M (1992) New computer-based approach for seeking a key step in the synthesis of complex structures. Application to taxane and crinipellin diterpenoid frameworks. Tetrahedron 48(41):8953–8962
19.
go back to reference Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586CrossRef Feller D (1996) The role of databases in support of computational chemistry calculations. J Comput Chem 17(13):1571–1586CrossRef
20.
go back to reference Huang Q, Li L-L, Yang S-Y (2011) RASA: a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules J Chem Inf Model 51(10):2768–2777 Huang Q, Li L-L, Yang S-Y (2011) RASA: a rapid retrosynthesis-based scoring method for the assessment of synthetic accessibility of drug-like molecules J Chem Inf Model 51(10):2768–2777
21.
go back to reference Salatin TD, Jorgensen WL (1980) Computer-assisted mechanistic evaluation of organic reactions. 1. Overview. J Org Chem 45(11):2043–2051 Salatin TD, Jorgensen WL (1980) Computer-assisted mechanistic evaluation of organic reactions. 1. Overview. J Org Chem 45(11):2043–2051
22.
go back to reference Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307 Goh GB, Hodas NO, Vishnu A (2017) Deep learning for computational chemistry. J Comput Chem 38(16):1291–1307
23.
go back to reference Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 14(12):4462–4475 Korotcov A, Tkachenko V, Russo DP, Ekins S (2017) Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm 14(12):4462–4475
24.
go back to reference Hansch C, Fujita T (1995) Classical and three-dimensional QSAR in agrochemistry. ACS Publications, Washington, DC Hansch C, Fujita T (1995) Classical and three-dimensional QSAR in agrochemistry. ACS Publications, Washington, DC
25.
go back to reference Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7(4):395–399 Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7(4):395–399
26.
go back to reference Luco JM, Ferretti FH (1997) QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. J Chem Inf Comput Sci 37(2):392–401 Luco JM, Ferretti FH (1997) QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. J Chem Inf Comput Sci 37(2):392–401
27.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288
28.
go back to reference Ferreira MMC (2016) Multivariate QSAR. In: Encyclopedia of physical organic chemistry. Wiley, Hoboken, pp 1–38 Ferreira MMC (2016) Multivariate QSAR. In: Encyclopedia of physical organic chemistry. Wiley, Hoboken, pp 1–38
29.
go back to reference Chakraborty A, Goswami D (2017) Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10(17):385CrossRef Chakraborty A, Goswami D (2017) Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab J Geosci 10(17):385CrossRef
30.
go back to reference Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18–28 Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst Appl 13(4):18–28
31.
go back to reference Wesley L, Veerapaneni S, Desai R, Mcgee F, Joglekar N, Rao S, Kamal Z (2016) 3d-QSAR and SVM prediction of braf-v600e and HIV integrase inhibitors: a comparative study and characterization of performance with a new expected prediction performance metric. Am J Biochem Biotechnol 12(4):253–262CrossRef Wesley L, Veerapaneni S, Desai R, Mcgee F, Joglekar N, Rao S, Kamal Z (2016) 3d-QSAR and SVM prediction of braf-v600e and HIV integrase inhibitors: a comparative study and characterization of performance with a new expected prediction performance metric. Am J Biochem Biotechnol 12(4):253–262CrossRef
32.
go back to reference Nekoei M, Mohammadhosseini M, Pourbasheer E (2015) QSAR study of vegfr-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach. Med Chem Res 24(7):3037–3046CrossRef Nekoei M, Mohammadhosseini M, Pourbasheer E (2015) QSAR study of vegfr-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach. Med Chem Res 24(7):3037–3046CrossRef
33.
go back to reference Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727CrossRefPubMed Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727CrossRefPubMed
34.
go back to reference Taussig HB (1962) A study of the German outbreak of phocomelia. Obstet Gynecol Surv 17(6):840–844 Taussig HB (1962) A study of the German outbreak of phocomelia. Obstet Gynecol Surv 17(6):840–844
35.
go back to reference Lorberbaum T, Nasir M, Keiser MJ, Vilar S, Hripcsak G, Tatonetti NP (2015) Systems pharmacology augments drug safety surveillance. Clin Pharm Therap 97(2):151–158 Lorberbaum T, Nasir M, Keiser MJ, Vilar S, Hripcsak G, Tatonetti NP (2015) Systems pharmacology augments drug safety surveillance. Clin Pharm Therap 97(2):151–158
Metadata
Title
Artificial Intelligence for Drug Development
Author
Muhammad Waqar Ashraf
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69951-2_5

Premium Partner