Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-08-2020 | Issue 11/2020

Water Resources Management 11/2020

Artificial Neural Network and Fuzzy Inference System Models for Forecasting Suspended Sediment and Turbidity in Basins at Different Scales

Journal:
Water Resources Management > Issue 11/2020
Authors:
Laís Coelho Teixeira, Priscila Pacheco Mariani, Olavo Correa Pedrollo, Nilza Maria dos Reis Castro, Vanessa Sari
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The monitoring of hydro-sedimentological processes is important for environmental control but depends on resources that are not always available. The estimation of sedimentological variables with mathematical models is often limited by the scarcity of data for a single basin. This research experiments with the simulation of suspended sediment concentration (SSC) and turbidity (T) using a regional model, with data from agricultural basins of different scales within the same hydrographic region, using hourly precipitation as one of the predictive variables, aggregated through the exponentially weighted moving average (EWMA) of past rainfall, in artificial neural network (ANN) and fuzzy inference system (FIS) models. The data monitoring was performed from January 2013 to February 2020 in four watersheds within the same region in southern Brazil, with areas ranging from 1.3 to 524.3 km2. For the turbidity estimation, the FIS model, which also made use of the discharge (Q) and area (A) of each basin as inputs, performed best, with a Nash-Sutcliffe efficiency (NS) of 0.860 for the verification samples. Several FIS and ANN models performed very well for SSC prediction (with NSs ranging from 0.950 to 0.977) due to the EWMA variable, including an FIS model that uses only this variable (NS 0.952). The results allow us to conclude that it is possible, with few data for the individual basin and a regional empirical model, to estimate SSC and turbidity, provided the aggregation of hourly precipitation by the EWMA, as long as the basins have similar physical and climatic characteristics.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 11/2020

Water Resources Management 11/2020 Go to the issue