Skip to main content
Top

2012 | OriginalPaper | Chapter

Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues

Authors : Margit Schulze, Edda Tobiasch

Published in: Tissue Engineering III: Cell - Surface Interactions for Tissue Culture

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medicine was revolutionized in the last two centuries and its advances have more than doubled life expectancy. Nevertheless, some problems are as old as mankind and although the underlying causes might have changed, the problems themselves have not. Musculoskeletal disorders and tooth loss are such problems; they are the major reasons for the ever-growing need for bone replacement, which cannot always be realized by autologous material. New, multidisciplinary strategies are needed for the development of novel materials to meet the demand. Stem-cell-based approaches combined with newly designed scaffold materials seem to be promising tools for constructing tissue replacements. Human mesenchymal stem cells and their remarkable differentiation potential are an interesting cell source for the development of bio-engineered tissues. Scaffolds based on natural and synthetic materials with or without the use of bioactive molecules are constructed to mimic the natural environment. They can improve proliferation and differentiation of the scaffold-seeded cells. Combined, they can provide specific remedies for hard tissue replacement, which will be discussed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bartold PM (2000) Periodontology 40:164–172 Bartold PM (2000) Periodontology 40:164–172
2.
go back to reference Aejaz HM, Aleem AK, Parveen N et al (2007) Stem cell therapy-present status. Transplant Proc 39:694–699 Aejaz HM, Aleem AK, Parveen N et al (2007) Stem cell therapy-present status. Transplant Proc 39:694–699
3.
go back to reference McKay R (2000) Stem cells––hype and hope. Nature 406:361–364 McKay R (2000) Stem cells––hype and hope. Nature 406:361–364
4.
go back to reference Chung Y, Klimanskaya I, Becker S et al (2005) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439: 216–219 Chung Y, Klimanskaya I, Becker S et al (2005) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439: 216–219
5.
go back to reference Bladé J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol 102:1115–1123 Bladé J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol 102:1115–1123
6.
go back to reference Pavletic S, Khouri I, Haagenson M et al (2005) Unrelated donor marrow transplantation for B-cell chronic lymphocytic leukemia after using myeloablative conditioning: results from the Center for international blood and marrow transplant research. J Clin Oncol 23:5788–5794 Pavletic S, Khouri I, Haagenson M et al (2005) Unrelated donor marrow transplantation for B-cell chronic lymphocytic leukemia after using myeloablative conditioning: results from the Center for international blood and marrow transplant research. J Clin Oncol 23:5788–5794
7.
go back to reference Crisostomoto PR, Wang Y, Markel TA et al (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B— but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:675–682 Crisostomoto PR, Wang Y, Markel TA et al (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B— but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:675–682
8.
go back to reference Slayton WB, Spangrude GJ (2004) Adult stem cell plasticity. In: Turksen K (ed) Adult stem cells. Humana Press, New Jersey, pp 1–3 Slayton WB, Spangrude GJ (2004) Adult stem cell plasticity. In: Turksen K (ed) Adult stem cells. Humana Press, New Jersey, pp 1–3
10.
go back to reference Mozid AM, Arnous S, Sammut EC et al (2011) Stem cell therapy for heart diseases. Br Med Bull 98:143--159 Mozid AM, Arnous S, Sammut EC et al (2011) Stem cell therapy for heart diseases. Br Med Bull 98:143--159
11.
go back to reference Vanikar AV, Dave SD, Thakkar UG et al (2010) Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010:582382. 20 Dec 2010 Vanikar AV, Dave SD, Thakkar UG et al (2010) Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010:582382. 20 Dec 2010
12.
go back to reference Meng J, Muntoni F, Morgan JE (2011) Stem cells to treat muscular dystrophies—where are we? Neuromuscul Disord 1:4–12 Meng J, Muntoni F, Morgan JE (2011) Stem cells to treat muscular dystrophies—where are we? Neuromuscul Disord 1:4–12
14.
go back to reference Joe AW, Gregory-Evans K (2010) Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 35:941–52 Joe AW, Gregory-Evans K (2010) Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 35:941–52
15.
go back to reference Barranco C (2011) Stem cells: mesenchymal stem cells from adipose tissue could be used to deliver gene therapy to the liver. Nat Rev Gastroenterol Hepatol 8:64 Barranco C (2011) Stem cells: mesenchymal stem cells from adipose tissue could be used to deliver gene therapy to the liver. Nat Rev Gastroenterol Hepatol 8:64
16.
go back to reference Liu T, Wang Y, Wen C, Zhang S et al (2011) Stem cells or macrophages, which contribute to bone marrow cell therapy for liver cirrhosis? Hepatology. doi:10.1002/hep.24431 Liu T, Wang Y, Wen C, Zhang S et al (2011) Stem cells or macrophages, which contribute to bone marrow cell therapy for liver cirrhosis? Hepatology. doi:10.​1002/​hep.​24431
17.
go back to reference Rhee YH, Ko JY, Chang MY et al (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. doi:10.1172/JCI45794 Rhee YH, Ko JY, Chang MY et al (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. doi:10.​1172/​JCI45794
18.
go back to reference Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation. J Clin Invest 120:29–40 Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation. J Clin Invest 120:29–40
19.
go back to reference Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461:895–897 Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461:895–897
20.
go back to reference Ringe J, Kaps C, Burmester G-R et al (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89:338–351 Ringe J, Kaps C, Burmester G-R et al (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89:338–351
21.
go back to reference Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008 Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008
22.
go back to reference Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369 Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369
23.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147
24.
go back to reference Whittaker PA (2005) Therapeutic cloning: the ethical limits. Toxicol Appl Pharmacol 207:689–691 Whittaker PA (2005) Therapeutic cloning: the ethical limits. Toxicol Appl Pharmacol 207:689–691
25.
go back to reference Peljto M, Wichterle H (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21:43–51 Feb 2011 Epub 20 Oct 2010 Peljto M, Wichterle H (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21:43–51 Feb 2011 Epub 20 Oct 2010
26.
go back to reference Canaari J, Kollet O, Lapidot T et al (2011) Neural regulation of bone, marrow, and the microenvironment. Front Biosci (Schol Ed) 3:1021–1031, June 1 Canaari J, Kollet O, Lapidot T et al (2011) Neural regulation of bone, marrow, and the microenvironment. Front Biosci (Schol Ed) 3:1021–1031, June 1
27.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676 Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676
28.
go back to reference Takahashi K, Okita K, Nakagawa M et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089 Takahashi K, Okita K, Nakagawa M et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089
29.
go back to reference Wernig A, Schäfer R, Knauf U et al (2005) On the regenerative capacity of human skeletal muscle. Artif Organs 29:192–198 Wernig A, Schäfer R, Knauf U et al (2005) On the regenerative capacity of human skeletal muscle. Artif Organs 29:192–198
30.
go back to reference Yu J, Vodyanik M, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920 Yu J, Vodyanik M, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920
31.
go back to reference Eminli S, Foudi A, Stadtfeld M et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976 Eminli S, Foudi A, Stadtfeld M et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976
32.
go back to reference Kim J, Greber B, Araúzo-Bravo M et al (2009a) Direct reprogramming of human neural stem cells by OCT4. Nature 461:643–649 Kim J, Greber B, Araúzo-Bravo M et al (2009a) Direct reprogramming of human neural stem cells by OCT4. Nature 461:643–649
33.
go back to reference Kim J, Sebastiano V, Wu G et al (2009b) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419 Kim J, Sebastiano V, Wu G et al (2009b) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419
34.
go back to reference Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775 Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775
35.
go back to reference Woltjen K, Michael I, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770 Woltjen K, Michael I, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770
36.
go back to reference Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210 Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210
37.
go back to reference Locke M, Ussher JE, Mistry R et al (2011) Transduction of human adipose-derived mesenchymal stem cells by recombinant adeno-associated virus vectors. Tissue Eng Part C Methods 17:949--959 Locke M, Ussher JE, Mistry R et al (2011) Transduction of human adipose-derived mesenchymal stem cells by recombinant adeno-associated virus vectors. Tissue Eng Part C Methods 17:949--959
38.
go back to reference Ohi Y, Qin H, Hong C et al (2011) Imcomplete DNA methylation underlines a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 5:541–549 Ohi Y, Qin H, Hong C et al (2011) Imcomplete DNA methylation underlines a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 5:541–549
39.
go back to reference Zhao T, Zhang ZN, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215 Zhao T, Zhang ZN, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215
40.
go back to reference Bilousova G, Hyun JD, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells from calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216 Bilousova G, Hyun JD, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells from calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216
41.
go back to reference Ye JH, Xu YJ, Gao J et al (2011) Critical size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076 Ye JH, Xu YJ, Gao J et al (2011) Critical size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076
42.
go back to reference Goodman J, Hodgson G (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714 Goodman J, Hodgson G (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714
43.
go back to reference Blanpain C (2010) Stem cells. Skin regeneration and repair. Nature 464:686–687 Blanpain C (2010) Stem cells. Skin regeneration and repair. Nature 464:686–687
44.
go back to reference Toma J, Akhavan M, Fernandes K et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784 Toma J, Akhavan M, Fernandes K et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784
45.
go back to reference Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91–98, Review Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91–98, Review
46.
go back to reference Becker AJ, McCulloch EA et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 2:452–454 Becker AJ, McCulloch EA et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 2:452–454
47.
go back to reference Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192 (Review) Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192 (Review)
48.
go back to reference Cudkowicz G, Upton A, Smith L et al (1964) An approach to the characterization of stem cells in mouse bone marrow. Ann NY Acad Sci 31:571–585 Cudkowicz G, Upton A, Smith L et al (1964) An approach to the characterization of stem cells in mouse bone marrow. Ann NY Acad Sci 31:571–585
49.
go back to reference Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66 Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66
50.
go back to reference Xiao JC, Jin XL, Ruck P et al (2004) Hepatic progenitor cells in human liver cirrhosis: immunohistochemical, electron microscopic and immunofluorencence confocal microscopic findings. World J Gastroenterol 10:1208–1211 Xiao JC, Jin XL, Ruck P et al (2004) Hepatic progenitor cells in human liver cirrhosis: immunohistochemical, electron microscopic and immunofluorencence confocal microscopic findings. World J Gastroenterol 10:1208–1211
51.
go back to reference Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812 Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812
52.
go back to reference Morsczeck C, Götz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165 Morsczeck C, Götz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165
53.
go back to reference Murphy M, Reid K, Dutton R et al (1997) Neural stem cells. J Investig Dermatol Symp Proc 2:8–13 (Review) Murphy M, Reid K, Dutton R et al (1997) Neural stem cells. J Investig Dermatol Symp Proc 2:8–13 (Review)
54.
go back to reference Schultz SS, Lucas PA (2006) Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes. J Neurosci Methods 152:144–155 Schultz SS, Lucas PA (2006) Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes. J Neurosci Methods 152:144–155
55.
go back to reference Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–9 Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–9
56.
go back to reference Rodriguez A-M, Elabd C, Amri E-Z et al (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128 Rodriguez A-M, Elabd C, Amri E-Z et al (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128
57.
go back to reference Zuk P, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228 Zuk P, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228
58.
go back to reference Leri A, Hosoda T, Kajstura J et al (2011) Identification of a coronary stem cell in the human heart. J Mol Med 89:947–959 Leri A, Hosoda T, Kajstura J et al (2011) Identification of a coronary stem cell in the human heart. J Mol Med 89:947–959
59.
go back to reference Kajstura J, Rota M, Hall SR et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–806 Kajstura J, Rota M, Hall SR et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–806
60.
go back to reference McQualter J, Yuen K, Williams B et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 4:1414–1419 McQualter J, Yuen K, Williams B et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 4:1414–1419
61.
go back to reference Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317 Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317
62.
go back to reference De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109 De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109
63.
go back to reference Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297 Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297
64.
go back to reference Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301 Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301
65.
go back to reference Minguell J, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520 (Review) Minguell J, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520 (Review)
66.
go back to reference Psaltis PJ, Zannettino ACW, Worthley SG et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210 Psaltis PJ, Zannettino ACW, Worthley SG et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210
67.
go back to reference Zuk P, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell 13:4279–4295 Zuk P, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell 13:4279–4295
68.
go back to reference Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584(17):3819–3825 Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584(17):3819–3825
69.
go back to reference Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787 Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787
70.
go back to reference Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650 Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650
71.
go back to reference Dicker A, Le Blanc K, Aström G et al. (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290 Dicker A, Le Blanc K, Aström G et al. (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290
72.
go back to reference Lee J, Kim Y, Kim S et al (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 30:41–47 Lee J, Kim Y, Kim S et al (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 30:41–47
73.
go back to reference Pansky A, Roitzheim B, Tobiasch E (2007) Differentiation potential of adult human mesenchymal stem cells. Clin Lab 53:81–84 Pansky A, Roitzheim B, Tobiasch E (2007) Differentiation potential of adult human mesenchymal stem cells. Clin Lab 53:81–84
74.
go back to reference Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147 Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147
75.
go back to reference Pacary E, Legros H, Valable S et al. (2006) Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 119:2667–2678 Pacary E, Legros H, Valable S et al. (2006) Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 119:2667–2678
76.
go back to reference Liu M, Han Z (2008) Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12:1155–1168 Liu M, Han Z (2008) Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12:1155–1168
77.
go back to reference Xie QP, Huang H, Xu B et al (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77:483–491 Xie QP, Huang H, Xu B et al (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77:483–491
78.
go back to reference Saulnier N, Lattanzi W, Puglisi MA et al (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13:71–78 Saulnier N, Lattanzi W, Puglisi MA et al (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13:71–78
79.
go back to reference Planat-Benard V, Silvestre J, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663 Planat-Benard V, Silvestre J, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663
80.
go back to reference De Francesco F, Tirino V, Desiderio V et al (2009) Human CD34+/CD90+ASCs Are Capable of Growing as Sphere Clusters, producing high levels of VEGF and forming capillaries. PLoS One 4:6537 De Francesco F, Tirino V, Desiderio V et al (2009) Human CD34+/CD90+ASCs Are Capable of Growing as Sphere Clusters, producing high levels of VEGF and forming capillaries. PLoS One 4:6537
81.
go back to reference Porada C, Zanjani E, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1:365–369 Porada C, Zanjani E, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1:365–369
82.
go back to reference Morsczeck C, Reichert TE, Vollner F et al (2007) The state of the art in human dental stem cell research. Mund Kiefer Gesichtschir 11:259–266 Morsczeck C, Reichert TE, Vollner F et al (2007) The state of the art in human dental stem cell research. Mund Kiefer Gesichtschir 11:259–266
83.
go back to reference Williams DF (1999) Williams dictionary of biomaterials. Liverpool University Press, Liverpool Williams DF (1999) Williams dictionary of biomaterials. Liverpool University Press, Liverpool
84.
go back to reference Griffith L, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014 Griffith L, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014
85.
go back to reference Khademhosseini A, Vacanti J, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71 Khademhosseini A, Vacanti J, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71
86.
go back to reference Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926 Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926
87.
go back to reference Park J, Lakes R (2007) Biomaterials: an introduction. Springer Science and Business Media, New York Park J, Lakes R (2007) Biomaterials: an introduction. Springer Science and Business Media, New York
88.
go back to reference Hutmacher D, Schantz J, Lam C et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Reg Med 1:245–260 Hutmacher D, Schantz J, Lam C et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Reg Med 1:245–260
89.
go back to reference Ogushi H, Caplan A (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927 Ogushi H, Caplan A (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927
90.
go back to reference Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337 Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337
91.
go back to reference Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774 Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774
92.
go back to reference Hofmann I, Haas D, Eckert A et al (2008) Mechanical properties of cellulose-apatite composite fibers for biomedical applications. Adv Appl Ceramics 107:293–297 Hofmann I, Haas D, Eckert A et al (2008) Mechanical properties of cellulose-apatite composite fibers for biomedical applications. Adv Appl Ceramics 107:293–297
93.
go back to reference Dvir T, Tsur-Gang O, Cohen S (2005) Designer-scaffolds for tissue engineering and regeneration. Israel J Chem 45:487–494 Dvir T, Tsur-Gang O, Cohen S (2005) Designer-scaffolds for tissue engineering and regeneration. Israel J Chem 45:487–494
94.
go back to reference Kim I, Seo S, Moon H et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotech Adv 26:1–21 Kim I, Seo S, Moon H et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotech Adv 26:1–21
95.
go back to reference Segura T, Anderson B, Chung P et al (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371 Segura T, Anderson B, Chung P et al (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371
96.
go back to reference Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Eur Cell Mater 30:29–39 Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Eur Cell Mater 30:29–39
97.
go back to reference Ragetly G, Griffon DJ, Chung YS (2010) The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 6:3988–3997 Ragetly G, Griffon DJ, Chung YS (2010) The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 6:3988–3997
98.
go back to reference Mauney J, Jaquiéry C, Volloch V et al (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185 Mauney J, Jaquiéry C, Volloch V et al (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185
99.
go back to reference Ragetly G, Ratanavaraporn J, Damrongsakkul S et al (2011) Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatine and chitosanoligosaccharide scaffolds. J Biomater Sci Polym Ed 22:1083–1098 Ragetly G, Ratanavaraporn J, Damrongsakkul S et al (2011) Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatine and chitosanoligosaccharide scaffolds. J Biomater Sci Polym Ed 22:1083–1098
100.
go back to reference Zippel N, Schulze M, Tobiasch E (2010) Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotech 4:1–22 Zippel N, Schulze M, Tobiasch E (2010) Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotech 4:1–22
101.
go back to reference Moroni L, Wijn J, Van Blitterswijkc A (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polymer Ed 19:543–572 Moroni L, Wijn J, Van Blitterswijkc A (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polymer Ed 19:543–572
102.
go back to reference Kim SH, Oh SA; Lee WK et al (2011a) Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation. Mater Sci Eng C-Mater Biol Appl 31:612–619 Kim SH, Oh SA; Lee WK et al (2011a) Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation. Mater Sci Eng C-Mater Biol Appl 31:612–619
103.
go back to reference Li Y, Danmark S, Edlund U et al (2011) Resveratrol-conjugated poly-epsilon-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater 7:751–758 Li Y, Danmark S, Edlund U et al (2011) Resveratrol-conjugated poly-epsilon-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater 7:751–758
104.
go back to reference Wan ACA, Ying JY (2010) Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev 62:731–740 Wan ACA, Ying JY (2010) Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev 62:731–740
105.
go back to reference Goldstein A, Zhu G, Morris G et al (1999) Effect of osteoblastic culture conditions on the structure of poly(D,L-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 5:421–434 Goldstein A, Zhu G, Morris G et al (1999) Effect of osteoblastic culture conditions on the structure of poly(D,L-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 5:421–434
106.
go back to reference Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–98 Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–98
107.
go back to reference Nasibulin AG, Anisimov AS, Pikhitsa PV et al (2007) Investigations of NanoBud formation. Chem Phys Letters 446:109–114 Nasibulin AG, Anisimov AS, Pikhitsa PV et al (2007) Investigations of NanoBud formation. Chem Phys Letters 446:109–114
108.
go back to reference Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6:3004–3012 Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6:3004–3012
109.
go back to reference Kim K, Dean D, Lu AQ et al (2011b) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticles content and initial cell seeding density in biodegradable nanocomposites scaffolds. Acta Biomater 7:1249–1264 Kim K, Dean D, Lu AQ et al (2011b) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticles content and initial cell seeding density in biodegradable nanocomposites scaffolds. Acta Biomater 7:1249–1264
110.
go back to reference Zhang L, Webster T (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80 Zhang L, Webster T (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80
111.
go back to reference Bauer S, Park J, von der Mark K et al (2008) Improved attachment of mesenchymal stem cells on super hydrophobic TiO2 nanotubes. Acta Biomater 4:1576–1582 Bauer S, Park J, von der Mark K et al (2008) Improved attachment of mesenchymal stem cells on super hydrophobic TiO2 nanotubes. Acta Biomater 4:1576–1582
112.
go back to reference Park J, Bauer S, Schmuki P et al (2009) Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett 9:3157–3164 Park J, Bauer S, Schmuki P et al (2009) Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett 9:3157–3164
113.
go back to reference Sahithi K, Swetha M, Ramasamy K et al (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283 Sahithi K, Swetha M, Ramasamy K et al (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283
115.
go back to reference Sitharaman B, Avti PK, Schaefer K et al (2011) A novel nanoparticle-enhanced photoacustic stimulus for bone tissue engineering. Tissue Eng A 17:1851–1858 Sitharaman B, Avti PK, Schaefer K et al (2011) A novel nanoparticle-enhanced photoacustic stimulus for bone tissue engineering. Tissue Eng A 17:1851–1858
116.
go back to reference Lim YC, Johnson J, Fei ZZ et al (2011) Micropatterning and characterization of electrospun poly(epsilon-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108:116–126 Lim YC, Johnson J, Fei ZZ et al (2011) Micropatterning and characterization of electrospun poly(epsilon-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108:116–126
117.
go back to reference Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration, nano-scaled drug release systems incorporated into nanostructured biomaterials represents a novel and promising strategy to tissue regeneration. Adv Funct Mater 18:3568–3582 Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration, nano-scaled drug release systems incorporated into nanostructured biomaterials represents a novel and promising strategy to tissue regeneration. Adv Funct Mater 18:3568–3582
118.
go back to reference Fan DM, Akkaraju GR, Couch EF et al (2011) The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 3:354–361 Fan DM, Akkaraju GR, Couch EF et al (2011) The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 3:354–361
119.
go back to reference Poursamar SA, Azami M, Mozafari M (2011) Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids Surf B Biointerfaces 84:310–316 Poursamar SA, Azami M, Mozafari M (2011) Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids Surf B Biointerfaces 84:310–316
120.
go back to reference Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A15:205–219 Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A15:205–219
121.
go back to reference Kretlow J, Mikos A (2008) From material to tissue: biomaterial development. Scaffold fabrication, and tissue engineering. AIChE J 54:3048–3067 Kretlow J, Mikos A (2008) From material to tissue: biomaterial development. Scaffold fabrication, and tissue engineering. AIChE J 54:3048–3067
122.
go back to reference Peltola S, Sanna M, Melchels F et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280 Peltola S, Sanna M, Melchels F et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280
123.
go back to reference Seyednejad H, Gawlitta D, Dhert WJ et al (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7:1999–2006 Seyednejad H, Gawlitta D, Dhert WJ et al (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7:1999–2006
124.
go back to reference De Gennes PG, Brochard-Wyart F, Quéré D (2002) Capillary and wetting phenomena—drops, bubbles, pearls, waves. Springer, New York De Gennes PG, Brochard-Wyart F, Quéré D (2002) Capillary and wetting phenomena—drops, bubbles, pearls, waves. Springer, New York
125.
go back to reference He L, Dexter AF, Middelberg APJ (2006) Biomolecular engineering at interfaces. Chem Eng Sci 61:989–1003 He L, Dexter AF, Middelberg APJ (2006) Biomolecular engineering at interfaces. Chem Eng Sci 61:989–1003
126.
go back to reference Chew SY, Low WC (2011) Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects. J Biomed Mater Res A 29:355–374 Chew SY, Low WC (2011) Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects. J Biomed Mater Res A 29:355–374
127.
go back to reference Biondi M, Ungaro F, Quaglia F et al (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242 Biondi M, Ungaro F, Quaglia F et al (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242
128.
go back to reference Cartmell S (2009) Controlled release scaffolds for bone tissue engineering. J Pharm Sci 98:430–441 Cartmell S (2009) Controlled release scaffolds for bone tissue engineering. J Pharm Sci 98:430–441
129.
go back to reference Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364:281–297 Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364:281–297
130.
go back to reference Richardson TP, Peters MC, Ennett AB et al (2001) Polymeric system for dual growth factor delivery. Nature Biotech 19:1029–1034 Richardson TP, Peters MC, Ennett AB et al (2001) Polymeric system for dual growth factor delivery. Nature Biotech 19:1029–1034
131.
go back to reference Sokolsky-Papkov M, Agashi K, Olaye A et al (2007) Polymeric carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206 Sokolsky-Papkov M, Agashi K, Olaye A et al (2007) Polymeric carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206
132.
go back to reference Ubersax L, Merkle H, Meinel L (2009) Biopolymer based growth factor delivery for tissue repair: from natural concepts to engineered systems. Tissue Eng Part B Rev 15:263–289 Ubersax L, Merkle H, Meinel L (2009) Biopolymer based growth factor delivery for tissue repair: from natural concepts to engineered systems. Tissue Eng Part B Rev 15:263–289
133.
go back to reference Vallet-Regi M, Balas F, Colilla M et al (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–91 Vallet-Regi M, Balas F, Colilla M et al (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–91
134.
go back to reference Kong SW, Kim JS, Park KS et al (2011) Surface modification with fibrin hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48:298–306 Kong SW, Kim JS, Park KS et al (2011) Surface modification with fibrin hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48:298–306
135.
go back to reference Ratanavaraporn J, Furuya H, Kohara H et al (2011) Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenic protein-2 from hydrogels on bone regeneration. Biomaterials 32:2797–2811 Ratanavaraporn J, Furuya H, Kohara H et al (2011) Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenic protein-2 from hydrogels on bone regeneration. Biomaterials 32:2797–2811
136.
go back to reference Baraniak PR, Nelson DM, Leeson CE et al (2011) Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials 32:3062–3071 Baraniak PR, Nelson DM, Leeson CE et al (2011) Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials 32:3062–3071
137.
go back to reference Smith RA, Meade K, Pickford CE et al (2011) Glycosaminoglycans as regulators of stem cell differentiation. Biochem Soc Trans 39:383–387 Smith RA, Meade K, Pickford CE et al (2011) Glycosaminoglycans as regulators of stem cell differentiation. Biochem Soc Trans 39:383–387
138.
go back to reference Huang Z, Feng QL, Yu B et al (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C-Mater Biolog Appl 31:683–687 Huang Z, Feng QL, Yu B et al (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C-Mater Biolog Appl 31:683–687
139.
go back to reference Zheng L, Fan H, Sun J et al (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93:783–792 Zheng L, Fan H, Sun J et al (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93:783–792
140.
go back to reference Fischbach C, Mooney DJ (2006) Polymeric systems for bioinspired delivery of angiogenetic molecules. Polym Reg Med Adv Polym Sci 203:191–221 Fischbach C, Mooney DJ (2006) Polymeric systems for bioinspired delivery of angiogenetic molecules. Polym Reg Med Adv Polym Sci 203:191–221
141.
go back to reference Arafat MT, Lam CXF, Ekaputra AK et al (2011) Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater 7:809–820 Arafat MT, Lam CXF, Ekaputra AK et al (2011) Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater 7:809–820
142.
go back to reference Kuo YC, Yeh CF (2011) Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactides-co-glycolide)/chitosan scaffolds. Colloids Surf B Biointerfaces 82:624–631 Kuo YC, Yeh CF (2011) Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactides-co-glycolide)/chitosan scaffolds. Colloids Surf B Biointerfaces 82:624–631
143.
go back to reference Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev 58:1379–1408 Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev 58:1379–1408
144.
go back to reference König U, Nitschke M, Menning A et al (2002) Durable surface modification of poly(tetrafluoroethylene) by low pressure H2O plasma treatment followed by acrylic acid graft polymerization. Colloids Surf B Biointerfaces 24:63–71 König U, Nitschke M, Menning A et al (2002) Durable surface modification of poly(tetrafluoroethylene) by low pressure H2O plasma treatment followed by acrylic acid graft polymerization. Colloids Surf B Biointerfaces 24:63–71
145.
go back to reference Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583 Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583
146.
go back to reference Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008 Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008
147.
go back to reference Faid K, Voicu R, Bani-Yaghoub M et al (2005) Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices 7:179–184 Faid K, Voicu R, Bani-Yaghoub M et al (2005) Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices 7:179–184
148.
go back to reference Bens A, Bermes G, Emons M et al (2007) Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prot J 13:38–47 Bens A, Bermes G, Emons M et al (2007) Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prot J 13:38–47
149.
go back to reference Kane RS, Takayama S, Ostuni E et al (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376 Kane RS, Takayama S, Ostuni E et al (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376
150.
go back to reference Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 3:335–373 Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 3:335–373
151.
go back to reference Guilak F, Cohen DM, Estes BT et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26 Guilak F, Cohen DM, Estes BT et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26
152.
go back to reference Gerecht S, Vunjak-Novakovic G, Langer R (2007) Engineering biomaterials for vascular differentiation and regeneration. Circulation 116:235 Gerecht S, Vunjak-Novakovic G, Langer R (2007) Engineering biomaterials for vascular differentiation and regeneration. Circulation 116:235
153.
go back to reference Boudou T, Crouzier T, Ren K et al (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467 Boudou T, Crouzier T, Ren K et al (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467
154.
go back to reference Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421 Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421
155.
go back to reference Chen M, Le DQ, Baatrup A et al (2011) Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 7:2244–2255 Chen M, Le DQ, Baatrup A et al (2011) Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 7:2244–2255
156.
go back to reference Tanaka M (2011) Design of novel 2D and 3D biointerfaces using self-organization to control cell behaviour. Biochim Biophys Acata-Gen Subjects 1810:251–258 Tanaka M (2011) Design of novel 2D and 3D biointerfaces using self-organization to control cell behaviour. Biochim Biophys Acata-Gen Subjects 1810:251–258
157.
go back to reference Graziano A, d’Aquino R, Cusella-De Angelis MG et al (2007) Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 6:e496 Graziano A, d’Aquino R, Cusella-De Angelis MG et al (2007) Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 6:e496
158.
go back to reference Vendra VK, Wu L, Krishnan S (2007) Polymer thin films for biomedical applications in nanotechnologies for the life sciences. Wiley–VCH, New York Vendra VK, Wu L, Krishnan S (2007) Polymer thin films for biomedical applications in nanotechnologies for the life sciences. Wiley–VCH, New York
159.
go back to reference Khademhosseini A, Jon S, Suh KY et al (2003) Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv Mater 15:1995–2000 Khademhosseini A, Jon S, Suh KY et al (2003) Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv Mater 15:1995–2000
160.
go back to reference Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicmposites. Science 277:1232–1237 Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicmposites. Science 277:1232–1237
161.
go back to reference Entcheva E, Bien H, Yin L et al (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762 Entcheva E, Bien H, Yin L et al (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762
162.
go back to reference Marchenko I, Yashchenok A, German S et al (2010) Polyelectrolytes: influence on evaporative self-assembly of particles and assembly of multilayers. Polymers 2:690–708 Marchenko I, Yashchenok A, German S et al (2010) Polyelectrolytes: influence on evaporative self-assembly of particles and assembly of multilayers. Polymers 2:690–708
163.
go back to reference Moby V, Labrude P, Kadi A et al (2011) Polyelctrolyte multilayer film and human mesenchymal stem cells: An attractive alternative in vascular engineering approaches. J Biomed Mater Res 96A:313–319 Moby V, Labrude P, Kadi A et al (2011) Polyelctrolyte multilayer film and human mesenchymal stem cells: An attractive alternative in vascular engineering approaches. J Biomed Mater Res 96A:313–319
164.
go back to reference Schulze M (1997) Supramolecular architectures from cellulose materials. Macromol Chem Macromol Symp 120:237–242 Schulze M (1997) Supramolecular architectures from cellulose materials. Macromol Chem Macromol Symp 120:237–242
165.
go back to reference Rulkens R, Wegner G, Enkelmann V et al (1996) Synthesis and properties of rigid polyelectrolytes based on sulfonated poly-p-phenylenes. Ber Bunsenges Phys Chem 100:707–715 Rulkens R, Wegner G, Enkelmann V et al (1996) Synthesis and properties of rigid polyelectrolytes based on sulfonated poly-p-phenylenes. Ber Bunsenges Phys Chem 100:707–715
166.
go back to reference Kamm B, Kamm M, Kiener A et al (2005) Polycarnitine—a new biomaterial. Appl Microbiol Biotechnol 67:1–7 Kamm B, Kamm M, Kiener A et al (2005) Polycarnitine—a new biomaterial. Appl Microbiol Biotechnol 67:1–7
167.
go back to reference Gupta VK, Kornfield JA, Ferencz A et al. (1994) Controlling molecular order in “hairy-rod” Langmuir–Blodgett films: a polarization-modulation microscopy study. Science 265:940–942 Gupta VK, Kornfield JA, Ferencz A et al. (1994) Controlling molecular order in “hairy-rod” Langmuir–Blodgett films: a polarization-modulation microscopy study. Science 265:940–942
168.
go back to reference Lenhert S, Meier MB, Meyer U et al (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surface patterned by Langmuir–Blodgett lithography. Biomaterials 26:563–570 Lenhert S, Meier MB, Meyer U et al (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surface patterned by Langmuir–Blodgett lithography. Biomaterials 26:563–570
169.
go back to reference Schreiber TD, Steinl C, Essl M et al (2009) The integrin {alpha}9{beta}1 on haematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94:1493--1501 Schreiber TD, Steinl C, Essl M et al (2009) The integrin {alpha}9{beta}1 on haematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94:1493--1501
170.
go back to reference Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specificationn. Cell 126:677–689 Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specificationn. Cell 126:677–689
171.
go back to reference Terraciano V, Hwang N, Moroni L et al (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738 Terraciano V, Hwang N, Moroni L et al (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738
172.
go back to reference Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313:1820–1829 Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313:1820–1829
173.
go back to reference McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495 McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495
174.
go back to reference Hsiong SX, Carampin P, Kong HJ et al (2008) Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A 85:145–156 Hsiong SX, Carampin P, Kong HJ et al (2008) Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A 85:145–156
175.
go back to reference McAdams TA, Miller WM, Papoutsakis ET (1997) Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. Br J Haematol 97:889–95 McAdams TA, Miller WM, Papoutsakis ET (1997) Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. Br J Haematol 97:889–95
176.
go back to reference Basciano L, Nemos C, Foliguet B et al (2011) Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol 12:12 Basciano L, Nemos C, Foliguet B et al (2011) Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol 12:12
177.
go back to reference Adams GB, Chabner KT, Alley IR et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603 Adams GB, Chabner KT, Alley IR et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603
178.
go back to reference Tanentzapf G, Devenport D, Godt D et al (2007) Integrin-dependent anchoring of a stem-cell niche. Nat Cell Biol 9(12):1413–1418 Tanentzapf G, Devenport D, Godt D et al (2007) Integrin-dependent anchoring of a stem-cell niche. Nat Cell Biol 9(12):1413–1418
179.
go back to reference Dennis E, Discher D, Mooney DJ et al (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677 Dennis E, Discher D, Mooney DJ et al (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677
180.
go back to reference Vicente-Manzanares M, Ma X, Adelstein RS et al (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790 Vicente-Manzanares M, Ma X, Adelstein RS et al (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790
181.
go back to reference Tobiasch E, Winter H, Schweizer J (1992) Structural features and sites of expression of a new murine 65 kD and 48 kD hair-related keratin pair, associated with a spezial type of parakeratotic epithelial differentiation. Differentiation 50:163–178 Tobiasch E, Winter H, Schweizer J (1992) Structural features and sites of expression of a new murine 65 kD and 48 kD hair-related keratin pair, associated with a spezial type of parakeratotic epithelial differentiation. Differentiation 50:163–178
182.
go back to reference Gurumurthy S, Xie SZ, Alagesan B (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663 Gurumurthy S, Xie SZ, Alagesan B (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663
183.
go back to reference Jia C, Doherty JP, Crudgington S et al (2009) Activation of purinergic receptors induces proliferation and neuronal differentiation in Swiss Webster mouse olfactory epithelium. Neuroscience 163:120–128 Jia C, Doherty JP, Crudgington S et al (2009) Activation of purinergic receptors induces proliferation and neuronal differentiation in Swiss Webster mouse olfactory epithelium. Neuroscience 163:120–128
184.
go back to reference Xi R, Xie T (2005) Stem cell-renewal controlled by chromatin remodelling factors. Science 310:1487–1489 Xi R, Xie T (2005) Stem cell-renewal controlled by chromatin remodelling factors. Science 310:1487–1489
185.
go back to reference Mylotte LA, Duffy AM, Murphy M et al (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 5:1325–1336 Mylotte LA, Duffy AM, Murphy M et al (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 5:1325–1336
186.
go back to reference D’Atri LP, Etulain J, Romaniuk MA et al (2011) The low viability of human CD34+ cells under acidic conditions is improved by exposure to thrombopoietin, stem cell factor, interleukin-3, or increased cyclic adenosine monophosphate levels. Transfusion. doi:10.1111/j.1537-2995.2010.03051 D’Atri LP, Etulain J, Romaniuk MA et al (2011) The low viability of human CD34+ cells under acidic conditions is improved by exposure to thrombopoietin, stem cell factor, interleukin-3, or increased cyclic adenosine monophosphate levels. Transfusion. doi:10.​1111/​j.​1537-2995.​2010.​03051
187.
188.
go back to reference De Proost I, Pintelon I, Wilkinson WJ et al (2009) Purinergic signalling in the pulmonary neuroepitelial body microenvironment unravelled by live cell imaging. FASEB J 4:1153–1160 De Proost I, Pintelon I, Wilkinson WJ et al (2009) Purinergic signalling in the pulmonary neuroepitelial body microenvironment unravelled by live cell imaging. FASEB J 4:1153–1160
189.
go back to reference Williams SE, Beronja S, Pasolli HA et al (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358 Williams SE, Beronja S, Pasolli HA et al (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358
190.
go back to reference Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move. J Exp Med 208:421–428 Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move. J Exp Med 208:421–428
191.
go back to reference Visigalli I, Biffi A (2011) Maintenance of a functional hematopoietic stem cell niche through galactocerebrosidase and other enzymes. Curr Opin Hematol 18:214–219 Visigalli I, Biffi A (2011) Maintenance of a functional hematopoietic stem cell niche through galactocerebrosidase and other enzymes. Curr Opin Hematol 18:214–219
192.
go back to reference Yang L, Peng R (2010) Unweiling hair follicle stem cells. Stem Cell Rev 4:658–664 Yang L, Peng R (2010) Unweiling hair follicle stem cells. Stem Cell Rev 4:658–664
193.
go back to reference Notara M, Shortt AJ, Galatowicz G et al (2010) IL6 and the human limbal stem cell niche: a mediator of epithelial–stromal interaction. Stem Cell Res 3:188–200 Notara M, Shortt AJ, Galatowicz G et al (2010) IL6 and the human limbal stem cell niche: a mediator of epithelial–stromal interaction. Stem Cell Res 3:188–200
194.
go back to reference Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120:60–70 Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120:60–70
195.
go back to reference Waddington CH (1956) Principles of embryology. Allen & Unwin, London Waddington CH (1956) Principles of embryology. Allen & Unwin, London
196.
go back to reference Huang S, Ingber DE (2004) From stem cells to functional tissue architecture. In: Sell S (ed) Stem cells handbook. Humana press, New Jersey Huang S, Ingber DE (2004) From stem cells to functional tissue architecture. In: Sell S (ed) Stem cells handbook. Humana press, New Jersey
197.
go back to reference Curran JM, Chen R, Hunt JA (2006) The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27:4783–4793 Curran JM, Chen R, Hunt JA (2006) The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27:4783–4793
198.
go back to reference Cavalcanti-Adam EA, Aydin D, Hirschfeld-Warneken VC et al (2008) Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J 2:276–285 Cavalcanti-Adam EA, Aydin D, Hirschfeld-Warneken VC et al (2008) Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J 2:276–285
199.
go back to reference Catledge SA, Vohra YK, Bellis SL et al (2004) Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotech 4:986–989 Catledge SA, Vohra YK, Bellis SL et al (2004) Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotech 4:986–989
200.
go back to reference Pennisi CP, Sevencu C, Dolatshahi-Pirouz A et al (2009) Responses of fibroblasts and glial cells to nanostructured platinum surfaces. Nanotechnology 20:1–9 Pennisi CP, Sevencu C, Dolatshahi-Pirouz A et al (2009) Responses of fibroblasts and glial cells to nanostructured platinum surfaces. Nanotechnology 20:1–9
201.
go back to reference zur Nieden NI (2011) Embryonic stem cells for osteo-degenerative diseases. Methods Mol Biol 690:1–30 zur Nieden NI (2011) Embryonic stem cells for osteo-degenerative diseases. Methods Mol Biol 690:1–30
202.
go back to reference Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today A 90:75–85 Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today A 90:75–85
203.
go back to reference Park JS, Chu JS, Tsou AD et al (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32:3921–3930 Park JS, Chu JS, Tsou AD et al (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32:3921–3930
204.
go back to reference Arnsdorf EJ, Tummala P, Kwon RY et al (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553 Arnsdorf EJ, Tummala P, Kwon RY et al (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553
205.
go back to reference Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–55 Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–55
206.
go back to reference Nakamura S, Matsumoto T, Sasaki J et al (2010) Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A 16:2467–2473 Nakamura S, Matsumoto T, Sasaki J et al (2010) Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A 16:2467–2473
207.
go back to reference Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648 Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648
208.
go back to reference Thesleff I, Tummers M (2008) Tooth organogenesis and regeneration. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge, 31 Jan 2008–2009 Thesleff I, Tummers M (2008) Tooth organogenesis and regeneration. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge, 31 Jan 2008–2009
209.
go back to reference Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36:781–789 Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36:781–789
210.
go back to reference Estrela C, Alencar AH, Kitten GT et al (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22:91–8 Estrela C, Alencar AH, Kitten GT et al (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22:91–8
211.
go back to reference Ferro F, Spelat R, Falini G et al (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310 Ferro F, Spelat R, Falini G et al (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310
Metadata
Title
Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues
Authors
Margit Schulze
Edda Tobiasch
Copyright Year
2012
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_115

Premium Partners