Skip to main content
Top

2017 | OriginalPaper | Chapter

19.  Aspergillus Lipases: Biotechnological and Industrial Application

Authors : Fabiano Jares Contesini, Felipe Calzado, Jose Valdo Madeira Jr., Marcelo Ventura Rubio, Mariane Paludetti Zubieta, Ricardo Rodrigues de Melo, Thiago Augusto Gonçalves

Published in: Fungal Metabolites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lipases are enzymes with remarkable properties and catalytic versatility. These proteins are capable of catalyzing hydrolytic and synthetic reactions, allowing the production of different compounds. Aspergillus are important producers of lipases, since they are able to secrete large amounts of these proteins to the extracellular media. Several studies have reported the importance of fermentation parameters as well as genetic engineering of Aspergillus strains in order to improve lipase production. Different Aspergillus species secrete lipases with interesting characteristics such as thermostability, stability in a wide pH range, stability in organic solvents, and enantioselectivity toward the substrate. The obtainment of lipases with highlighted characteristics for use in industry is the main focus of several studies. Such lipases can be obtained with screening of Aspergillus strains, protein engineering, and immobilization of lipases that can frequently improve thermostability and enantioselectivity. Among the applications of lipases from Aspergillus, there are studies on the improvement of sensorial properties of different products in the food industry, compatibility with detergents for removal of fat stains from fabrics, and the obtainment of enantiopure pharmaceuticals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Contesini FJ, Lopes DB, Macedo GA, Nascimento MDG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B: Enzym 67:163–171CrossRef Contesini FJ, Lopes DB, Macedo GA, Nascimento MDG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B: Enzym 67:163–171CrossRef
2.
go back to reference Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed. 37:1608–1633 Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed. 37:1608–1633
3.
go back to reference Jaeger K, Eggert T (2002) Lipases for biotechnology. Curr Open Biotechnol 13:390–397CrossRef Jaeger K, Eggert T (2002) Lipases for biotechnology. Curr Open Biotechnol 13:390–397CrossRef
4.
go back to reference Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274CrossRef Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274CrossRef
5.
go back to reference Durand A, Chereau D (1988) A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnol Bioeng 31:476–486CrossRef Durand A, Chereau D (1988) A new pilot reactor for solid-state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnol Bioeng 31:476–486CrossRef
6.
go back to reference Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58C:1–75CrossRef Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58C:1–75CrossRef
7.
go back to reference Schaffarczyk M, Ostdal H, Koehler P (2014) Lipases in wheat breadmaking: analysis and functional effects of lipid reaction products. J Agric Food Chem 62:8229–8237CrossRef Schaffarczyk M, Ostdal H, Koehler P (2014) Lipases in wheat breadmaking: analysis and functional effects of lipid reaction products. J Agric Food Chem 62:8229–8237CrossRef
8.
go back to reference Jurado E, García-Román M, Luzón G, Altmajer-Vaz D, Jiménez-Pérez JL (2011) Optimization of lipase performance in detergent formulations for hard surfaces. Ind Eng Chem Res 50:11502–11510CrossRef Jurado E, García-Román M, Luzón G, Altmajer-Vaz D, Jiménez-Pérez JL (2011) Optimization of lipase performance in detergent formulations for hard surfaces. Ind Eng Chem Res 50:11502–11510CrossRef
9.
go back to reference Contesini FJ, de Oliveira CP (2006) Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron Asymm 17:2069–2073CrossRef Contesini FJ, de Oliveira CP (2006) Esterification of (RS)-Ibuprofen by native and commercial lipases in a two-phase system containing ionic liquids. Tetrahedron Asymm 17:2069–2073CrossRef
10.
go back to reference Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634CrossRef Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634CrossRef
11.
go back to reference Rosset IG, Cavalheiro MCHT, Assaf EM, Porto ALM (2013) Enzymatic esterification of oleic acid with aliphatic alcohols for the biodiesel production by Candida antarctica lipase. Catal Lett 143:863–872CrossRef Rosset IG, Cavalheiro MCHT, Assaf EM, Porto ALM (2013) Enzymatic esterification of oleic acid with aliphatic alcohols for the biodiesel production by Candida antarctica lipase. Catal Lett 143:863–872CrossRef
12.
go back to reference Da Silva VCF, Contesini FJ, Carvalho PDO (2008) Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. J Braz Chem Soc 19:1468–1474CrossRef Da Silva VCF, Contesini FJ, Carvalho PDO (2008) Characterization and catalytic activity of free and immobilized lipase from Aspergillus niger: a comparative study. J Braz Chem Soc 19:1468–1474CrossRef
13.
go back to reference Da Silva VCF, Contesini FJ, De Oliveira CP (2009) Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports. J Ind Microbiol Biotechnol 36:949–954CrossRef Da Silva VCF, Contesini FJ, De Oliveira CP (2009) Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports. J Ind Microbiol Biotechnol 36:949–954CrossRef
14.
go back to reference Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75CrossRef Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75CrossRef
15.
go back to reference Varga J, Szigeti G, Baranyi N, Kocsubé S, O’Gorman CM, Dyer PS (2014) Aspergillus: sex and recombination. Mycopathologia 178:349–362CrossRef Varga J, Szigeti G, Baranyi N, Kocsubé S, O’Gorman CM, Dyer PS (2014) Aspergillus: sex and recombination. Mycopathologia 178:349–362CrossRef
16.
go back to reference Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139CrossRef Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139CrossRef
17.
go back to reference Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11CrossRef Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11CrossRef
18.
go back to reference Fleiβner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270CrossRef Fleiβner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270CrossRef
19.
go back to reference Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474CrossRef Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474CrossRef
20.
go back to reference Pontecorvo G, Roper JA, Chemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238 Pontecorvo G, Roper JA, Chemmons LM, Macdonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238
21.
go back to reference Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115CrossRef Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115CrossRef
22.
go back to reference Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52CrossRef Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52CrossRef
23.
go back to reference Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221CrossRef Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221CrossRef
24.
go back to reference Borgström B, Brockman HL (1984) Lipases. Elsevier, Amsterdam Borgström B, Brockman HL (1984) Lipases. Elsevier, Amsterdam
25.
go back to reference Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569CrossRef Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569CrossRef
26.
go back to reference Yadav RP, Saxena RK, Gupta R, Davidson S (1998) Lipase production by Aspergillus and Penicillium species. Folia Microbiol (Praha) 43:373–378CrossRef Yadav RP, Saxena RK, Gupta R, Davidson S (1998) Lipase production by Aspergillus and Penicillium species. Folia Microbiol (Praha) 43:373–378CrossRef
27.
go back to reference Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54CrossRef Gupta R, Kumari A, Syal P, Singh Y (2015) Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Prog Lipid Res 57:40–54CrossRef
28.
go back to reference Bassegoda A, Pastor FIJ, Diaz P (2012) Rhodococcus sp. strain CR-53 lipr, the first member of a new bacterial lipase family (Family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1732CrossRef Bassegoda A, Pastor FIJ, Diaz P (2012) Rhodococcus sp. strain CR-53 lipr, the first member of a new bacterial lipase family (Family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1732CrossRef
29.
go back to reference Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238CrossRef Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238CrossRef
30.
go back to reference Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) Carbohydrate active enzymes database. Carbohydrate-active enzyme database an expert resource glycogenomics. Nucleic Acids Res 37:D233–D238CrossRef Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) Carbohydrate active enzymes database. Carbohydrate-active enzyme database an expert resource glycogenomics. Nucleic Acids Res 37:D233–D238CrossRef
31.
go back to reference Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183CrossRef Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183CrossRef
32.
go back to reference Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng Des Sel 5:197–211CrossRef Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The α/β hydrolase fold. Protein Eng Des Sel 5:197–211CrossRef
33.
go back to reference Cousin X, Hotelier T, Lievin P, Toutant JP, Chatonnet A (1996) A cholinesterase genes serverer (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res 24:132–136CrossRef Cousin X, Hotelier T, Lievin P, Toutant JP, Chatonnet A (1996) A cholinesterase genes serverer (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogenetic relationships, mutations and structural data retrieval. Nucleic Acids Res 24:132–136CrossRef
34.
go back to reference Cousin X, Hotelier T, Giles K, Lievin P, Toutant J, Chatonnet A (1997) The α/β fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 25:143–146 Cousin X, Hotelier T, Giles K, Lievin P, Toutant J, Chatonnet A (1997) The α/β fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 25:143–146
35.
go back to reference Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the α/β -hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:423–429CrossRef Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the α/β -hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:423–429CrossRef
36.
go back to reference Widmann M, Juhl PB, Pleiss J (2010) Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genomics 11:123CrossRef Widmann M, Juhl PB, Pleiss J (2010) Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genomics 11:123CrossRef
37.
go back to reference Fischer M, Pleiss J (2003) The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res 31:319–321CrossRef Fischer M, Pleiss J (2003) The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res 31:319–321CrossRef
38.
go back to reference Fischer M, Thai QK, Grieb M, Pleiss J (2006) DWARF–A data warehouse system for analyzing protein families. BMC Bioinformatics 7:495CrossRef Fischer M, Thai QK, Grieb M, Pleiss J (2006) DWARF–A data warehouse system for analyzing protein families. BMC Bioinformatics 7:495CrossRef
39.
go back to reference Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database Understanding and exploiting sequence – structure – function relationships Jurgen. J Mol Catal 10:491–508CrossRef Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database Understanding and exploiting sequence – structure – function relationships Jurgen. J Mol Catal 10:491–508CrossRef
40.
go back to reference Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen C-F, Zhang B, Du Z (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294CrossRef Zhou P, Zhang G, Chen S, Jiang Z, Tang Y, Henrissat B, Yan Q, Yang S, Chen C-F, Zhang B, Du Z (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294CrossRef
41.
go back to reference Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520CrossRef Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520CrossRef
42.
go back to reference Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798CrossRef Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798CrossRef
43.
go back to reference Bornscheuer UT, Bessler C, Srinivas R, Hari Krishna S (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437CrossRef Bornscheuer UT, Bessler C, Srinivas R, Hari Krishna S (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437CrossRef
44.
go back to reference Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96CrossRef Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96CrossRef
45.
go back to reference Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80CrossRef Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80CrossRef
46.
go back to reference Vasudevan PT (2004) Purification of lipase. In: Müller G, Petry S (eds) Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Wiley on-line library, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG Vasudevan PT (2004) Purification of lipase. In: Müller G, Petry S (eds) Lipases and phospholipases in drug development: from biochemistry to molecular pharmacology. Wiley on-line library, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG
47.
go back to reference Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403CrossRef Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403CrossRef
48.
go back to reference Edwinoliver NG, Thirunavukarasu K, Naidu RB, Gowthaman MK, Kambe TN, Kamini NR (2010) Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101:6791–6796CrossRef Edwinoliver NG, Thirunavukarasu K, Naidu RB, Gowthaman MK, Kambe TN, Kamini NR (2010) Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101:6791–6796CrossRef
49.
go back to reference Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721CrossRef Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721CrossRef
50.
go back to reference Trimukhe KD, Mahadik ND, Gokhale DV, Varma AJ (2008) Environment friendly crosslinked chitosan as a matrix for selective adsorption and purification of lipase of Aspergillus niger. Int J Biol Macromol 43:422–425CrossRef Trimukhe KD, Mahadik ND, Gokhale DV, Varma AJ (2008) Environment friendly crosslinked chitosan as a matrix for selective adsorption and purification of lipase of Aspergillus niger. Int J Biol Macromol 43:422–425CrossRef
51.
go back to reference Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490CrossRef Mhetras NC, Bastawde KB, Gokhale DV (2009) Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100:1486–1490CrossRef
52.
go back to reference Kamini NR, Mala JGS, Puvanakrishnan R (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem 33:505–511CrossRef Kamini NR, Mala JGS, Puvanakrishnan R (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem 33:505–511CrossRef
53.
go back to reference Mala JGS, Edwinoliver NG, Kamini NR, Puvanakrishnan R (2007) Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J Gen Appl Microbiol 53:247–253CrossRef Mala JGS, Edwinoliver NG, Kamini NR, Puvanakrishnan R (2007) Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J Gen Appl Microbiol 53:247–253CrossRef
54.
go back to reference Veerabhadrappa MB, Shivakumar SB, Devappa S (2014) Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J Biosci Bioeng 117:208–214CrossRef Veerabhadrappa MB, Shivakumar SB, Devappa S (2014) Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. J Biosci Bioeng 117:208–214CrossRef
55.
go back to reference D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97:1828–1833CrossRef D’Annibale A, Sermanni GG, Federici F, Petruccioli M (2006) Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresour Technol 97:1828–1833CrossRef
56.
go back to reference Pokorny D (1997) Aspergillus niger lipases: induction, isolation and characterization of two lipases from a MZKI Al 16 strain. J Mol Catal B: Enzym 177:215–222 Pokorny D (1997) Aspergillus niger lipases: induction, isolation and characterization of two lipases from a MZKI Al 16 strain. J Mol Catal B: Enzym 177:215–222
57.
go back to reference Hong S, Horiuchi H, Ohta A (2003) Molecular cloning of a phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol Lett 224:231–237CrossRef Hong S, Horiuchi H, Ohta A (2003) Molecular cloning of a phospholipase D gene from Aspergillus nidulans and characterization of its deletion mutants. FEMS Microbiol Lett 224:231–237CrossRef
58.
go back to reference Hong S, Horiuchi H, Ohta A (2005) Identification and molecular cloning of a gene encoding Phospholipase A2 (plaA) from Aspergillus nidulans. Biochim Biophys Acta 1735:222–229CrossRef Hong S, Horiuchi H, Ohta A (2005) Identification and molecular cloning of a gene encoding Phospholipase A2 (plaA) from Aspergillus nidulans. Biochim Biophys Acta 1735:222–229CrossRef
59.
go back to reference Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174CrossRef Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174CrossRef
60.
go back to reference Padhiar J, Das A, Bhattacharya S (2011) Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Pak J Biol Sci 14:1011–1018CrossRef Padhiar J, Das A, Bhattacharya S (2011) Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Pak J Biol Sci 14:1011–1018CrossRef
61.
go back to reference Tereza L, Souza A, Oliveira JS, Santos VL, Regis WCB, Santoro MM, Resende RR (2014) Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an Extracellular Lipase. Biomed Res Int 2014:1–11. Article ID 108913 Tereza L, Souza A, Oliveira JS, Santos VL, Regis WCB, Santoro MM, Resende RR (2014) Lipolytic potential of Aspergillus japonicus LAB01: production, partial purification, and characterisation of an Extracellular Lipase. Biomed Res Int 2014:1–11. Article ID 108913
62.
go back to reference Abrunhosa L, Oliveira F, Dantas D, Gonçalves C, Belo I (2013) Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng 36:285–291CrossRef Abrunhosa L, Oliveira F, Dantas D, Gonçalves C, Belo I (2013) Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng 36:285–291CrossRef
63.
go back to reference Shangguan J-J, Liu Y-Q, Wang F-J, Zhao J, Fan L-Q, Li S-X, Xu J-H (2011) Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity. Appl Biochem Biotechnol 165:949–962CrossRef Shangguan J-J, Liu Y-Q, Wang F-J, Zhao J, Fan L-Q, Li S-X, Xu J-H (2011) Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity. Appl Biochem Biotechnol 165:949–962CrossRef
64.
go back to reference Dayanandan A, Rani SHV, Shanmugavel M, Gnanamani A, Rajakumar GS (2013) Enhanced production of Aspergillus tamarii lipase for recovery of fat from tannery fleshings. Braz J Microbiol 1095:1089–1095CrossRef Dayanandan A, Rani SHV, Shanmugavel M, Gnanamani A, Rajakumar GS (2013) Enhanced production of Aspergillus tamarii lipase for recovery of fat from tannery fleshings. Braz J Microbiol 1095:1089–1095CrossRef
65.
go back to reference Mayordomo I, Randez-gil F, Prieto JA (2000) Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. J Agric Food Chem 48:105–109 Mayordomo I, Randez-gil F, Prieto JA (2000) Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. J Agric Food Chem 48:105–109
66.
go back to reference Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N Biotechnol 28:627–638CrossRef Basheer SM, Chellappan S, Beena PS, Sukumaran RK, Elyas KK, Chandrasekaran M (2011) Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N Biotechnol 28:627–638CrossRef
67.
go back to reference Kaushik R, Saran S, Isar J, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B: Enzym 40:121–126CrossRef Kaushik R, Saran S, Isar J, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B: Enzym 40:121–126CrossRef
68.
go back to reference Dobrev G, Zhekova B, Dobreva V, Strinska H, Doykina P, Krastanov A (2015) Lipase biosynthesis by Aspergillus carbonarius in a nutrient medium containing products and byproducts from the oleochemical industry. Biocatal Agric Biotechnol 4:77–82 Dobrev G, Zhekova B, Dobreva V, Strinska H, Doykina P, Krastanov A (2015) Lipase biosynthesis by Aspergillus carbonarius in a nutrient medium containing products and byproducts from the oleochemical industry. Biocatal Agric Biotechnol 4:77–82
69.
go back to reference Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277CrossRef Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277CrossRef
70.
go back to reference Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sustain Energy Rev 44:182–197CrossRef Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sustain Energy Rev 44:182–197CrossRef
71.
go back to reference Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sustain Energy Rev 41:1447–1464CrossRef Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sustain Energy Rev 41:1447–1464CrossRef
72.
go back to reference Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B: Enzym 101:56–66CrossRef Asgher M, Shahid M, Kamal S, Iqbal HMN (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J Mol Catal B: Enzym 101:56–66CrossRef
73.
go back to reference Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436CrossRef Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436CrossRef
74.
go back to reference Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept Lett 17:1412–1416CrossRef Raghuvanshi S, Gupta R (2010) Advantages of the immobilization of lipase on porous supports over free enzyme. Protein Pept Lett 17:1412–1416CrossRef
75.
go back to reference Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205CrossRef Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205CrossRef
76.
go back to reference Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520CrossRef Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520CrossRef
77.
go back to reference Jegannathan KR, Abang S (2008) Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol 28:253–264CrossRef Jegannathan KR, Abang S (2008) Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol 28:253–264CrossRef
78.
go back to reference Yücel Y, Demir C, Dizge N, Keskinler B (2011) Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenergy 35:1496–1501CrossRef Yücel Y, Demir C, Dizge N, Keskinler B (2011) Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass Bioenergy 35:1496–1501CrossRef
79.
go back to reference Zhang B, Weng Y, Xu H (2012) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93:61–70CrossRef Zhang B, Weng Y, Xu H (2012) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93:61–70CrossRef
80.
go back to reference Zubiolo C, Cristiane R, Santos A (2014) Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng 37:1781–1788 Zubiolo C, Cristiane R, Santos A (2014) Encapsulation in a sol–gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue. Bioprocess Biosyst Eng 37:1781–1788
81.
go back to reference Osho MB, Popoola T, Kareem SO (2014) Immobilization of Aspergillus niger ATCC 1015 on bionatural structures for lipase production. Eng Life Sci 14:449–454CrossRef Osho MB, Popoola T, Kareem SO (2014) Immobilization of Aspergillus niger ATCC 1015 on bionatural structures for lipase production. Eng Life Sci 14:449–454CrossRef
82.
go back to reference Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468CrossRef Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468CrossRef
83.
go back to reference Osuna Y, Sandoval J, Saade H, López RG, Martinez JL, Colunga EM, de la Cruz G, Segura EP, Arévalo FJ, Zon MA, Fernández H, Ilyina A (2015) Immobilization of Aspergillus niger lipase on chitosan–coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst Eng 38:1437–1445 Osuna Y, Sandoval J, Saade H, López RG, Martinez JL, Colunga EM, de la Cruz G, Segura EP, Arévalo FJ, Zon MA, Fernández H, Ilyina A (2015) Immobilization of Aspergillus niger lipase on chitosan–coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst Eng 38:1437–1445
84.
go back to reference Dhand C, Solanki PR, Sood KN, Datta M, Malhotra BD (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486CrossRef Dhand C, Solanki PR, Sood KN, Datta M, Malhotra BD (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486CrossRef
85.
go back to reference Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66CrossRef Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66CrossRef
86.
go back to reference Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:1–16CrossRef Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:1–16CrossRef
87.
go back to reference Tudorache M, Nae A, Coman S, Parvulescu VI (2013) Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Adv 3:4052CrossRef Tudorache M, Nae A, Coman S, Parvulescu VI (2013) Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol carbonate. RSC Adv 3:4052CrossRef
88.
go back to reference Nielsen PH (2015) The Novozymes Report 2014 Nielsen PH (2015) The Novozymes Report 2014
90.
go back to reference García EF, Fandiño RL, Alonso L, Ramos M (1994) The use of lipolytic and proteolytic enzymes in the manufacture of Manchego type cheese from ovine and bovine milk. J Dairy Sci 77:2139–2149CrossRef García EF, Fandiño RL, Alonso L, Ramos M (1994) The use of lipolytic and proteolytic enzymes in the manufacture of Manchego type cheese from ovine and bovine milk. J Dairy Sci 77:2139–2149CrossRef
91.
go back to reference Jolly RC, Kosikowski FV (1975) Flavor development in pasteurized milk blue cheese by animal and microbial lipase preparations. J Dairy Sci 58:846–852CrossRef Jolly RC, Kosikowski FV (1975) Flavor development in pasteurized milk blue cheese by animal and microbial lipase preparations. J Dairy Sci 58:846–852CrossRef
92.
go back to reference Kim Ha J, Lindsay RC (1993) Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. J Dairy Sci 76:677–690CrossRef Kim Ha J, Lindsay RC (1993) Release of volatile branched-chain and other fatty acids from ruminant milk fats by various lipases. J Dairy Sci 76:677–690CrossRef
93.
go back to reference Hernández I, De Renobales M, Virto M, Pérez-Elortondo FJ, Barron LJR, Flanagan C, Albisu M (2005) Assessment of industrial lipases for flavour development in commercial Idiazabal (ewe’s raw milk) cheese. Enzyme Microb Technol 36:870–879CrossRef Hernández I, De Renobales M, Virto M, Pérez-Elortondo FJ, Barron LJR, Flanagan C, Albisu M (2005) Assessment of industrial lipases for flavour development in commercial Idiazabal (ewe’s raw milk) cheese. Enzyme Microb Technol 36:870–879CrossRef
94.
go back to reference Arbige MV, Neubeck C (1987) Lipolytic enzyme derived from a Aspergillus microorganism having an accelerating effect on cheese flavor development. US 4,726,954 A Arbige MV, Neubeck C (1987) Lipolytic enzyme derived from a Aspergillus microorganism having an accelerating effect on cheese flavor development. US 4,726,954 A
95.
go back to reference Jolly RC, Kosikowski FV (1975) Quantification of lactones in ripening pasteurized milk blue cheese containing added microbial lipases. J Agric Food Chem 23:1175–1176CrossRef Jolly RC, Kosikowski FV (1975) Quantification of lactones in ripening pasteurized milk blue cheese containing added microbial lipases. J Agric Food Chem 23:1175–1176CrossRef
96.
go back to reference Van Eijk JH, Docter C (2001) Dough product and method for improving bread quality. US 6,251,444 B1 Van Eijk JH, Docter C (2001) Dough product and method for improving bread quality. US 6,251,444 B1
97.
go back to reference Olesen T, Si JQ, Donelyan V (2000) Use of lipases in baking. US 6,110,508 A Olesen T, Si JQ, Donelyan V (2000) Use of lipases in baking. US 6,110,508 A
98.
go back to reference Rey MW, Golightly EJ, Spendler T (2003) Methods for using lipases in baking. US 65,558,715 B1 Rey MW, Golightly EJ, Spendler T (2003) Methods for using lipases in baking. US 65,558,715 B1
99.
go back to reference Siswoyo TA, Tanaka N, Morita N (1999) Effect of lipase combined with alpha-amylase of retrogradation of bread. Food Sci Technol Res 5:356–361CrossRef Siswoyo TA, Tanaka N, Morita N (1999) Effect of lipase combined with alpha-amylase of retrogradation of bread. Food Sci Technol Res 5:356–361CrossRef
100.
go back to reference Park SH, Maeda T, Morita N (2005) Effect of whole quinoa flours and lipase on the chemical, rheological and breadmaking characteristics of wheat flour. J Appl Glycosci 52:337–343CrossRef Park SH, Maeda T, Morita N (2005) Effect of whole quinoa flours and lipase on the chemical, rheological and breadmaking characteristics of wheat flour. J Appl Glycosci 52:337–343CrossRef
101.
go back to reference Hamam F, Shahidi F (2005) Enzymatic incorporation of capric acid into a single cell oil rich in docosahexaenoic acid and docosapentaenoic acid and oxidative stability of the resultant structured lipid. Food Chem 91:583–591CrossRef Hamam F, Shahidi F (2005) Enzymatic incorporation of capric acid into a single cell oil rich in docosahexaenoic acid and docosapentaenoic acid and oxidative stability of the resultant structured lipid. Food Chem 91:583–591CrossRef
102.
go back to reference Zhou D, Xu X, Mu H, Høy C-E, Adler-Nissen J (2007) Lipase-catalyzed production of structured lipids via acidolysis of fish oil with caprylic acid. J Food Lipids 7:263–274CrossRef Zhou D, Xu X, Mu H, Høy C-E, Adler-Nissen J (2007) Lipase-catalyzed production of structured lipids via acidolysis of fish oil with caprylic acid. J Food Lipids 7:263–274CrossRef
103.
go back to reference Rajan A, Sobankumar DR, Nair AJ (2013) Enrichment of ω-3 fatty acids in flax seed oil by alkaline lipase of Aspergillus fumigatus MTCC 9657. Int J Food Sci Technol 1994:1337–1343 Rajan A, Sobankumar DR, Nair AJ (2013) Enrichment of ω-3 fatty acids in flax seed oil by alkaline lipase of Aspergillus fumigatus MTCC 9657. Int J Food Sci Technol 1994:1337–1343
104.
go back to reference Carvalho PO, Calafatti SA, Marassi M, Da Silva DM, Contesini FJ, Bizaco R, Macedo GA (2005) Potencial de biocatálise enantiosseletiva de lipases microbianas. Quim Nova 28:614–621CrossRef Carvalho PO, Calafatti SA, Marassi M, Da Silva DM, Contesini FJ, Bizaco R, Macedo GA (2005) Potencial de biocatálise enantiosseletiva de lipases microbianas. Quim Nova 28:614–621CrossRef
105.
go back to reference Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170CrossRef Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170CrossRef
106.
go back to reference Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRef Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRef
107.
go back to reference Carvalho PDO, Contesini FJ, Ikegaki M (2006) Enzymatic resolution of (R, S)-ibuprofen and (R, S)-ketoprofen by microbial lipases from native and commercial sources. Braz J Microbiol 37:329–337CrossRef Carvalho PDO, Contesini FJ, Ikegaki M (2006) Enzymatic resolution of (R, S)-ibuprofen and (R, S)-ketoprofen by microbial lipases from native and commercial sources. Braz J Microbiol 37:329–337CrossRef
108.
go back to reference Tamborini L, Romano D, Pinto A, Contente M, Iannuzzi MC, Conti P, Molinari F (2013) Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent. Tetrahedron Lett 54:6090–6093CrossRef Tamborini L, Romano D, Pinto A, Contente M, Iannuzzi MC, Conti P, Molinari F (2013) Biotransformation with whole microbial systems in a continuous flow reactor: resolution of (RS)-flurbiprofen using Aspergillus oryzae by direct esterification with ethanol in organic solvent. Tetrahedron Lett 54:6090–6093CrossRef
109.
go back to reference Hu C, Wang N, Zhang W, Zhang S, Meng Y, Yu X (2015) Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester. J Biotechnol 194:12–18CrossRef Hu C, Wang N, Zhang W, Zhang S, Meng Y, Yu X (2015) Immobilization of Aspergillus terreus lipase in self-assembled hollow nanospheres for enantioselective hydrolysis of ketoprofen vinyl ester. J Biotechnol 194:12–18CrossRef
110.
go back to reference Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131 Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131
111.
go back to reference Li C, Li L, Zhou H, Xia C, He L (2015) Improving yield of 1,3-diglyceride by whole-cell lipase from A. niger GZUF36 catalyzed glycerolysis via medium optimization. J Braz Chem Soc 26:247–254 Li C, Li L, Zhou H, Xia C, He L (2015) Improving yield of 1,3-diglyceride by whole-cell lipase from A. niger GZUF36 catalyzed glycerolysis via medium optimization. J Braz Chem Soc 26:247–254
112.
go back to reference Tamalampudi S, Hama S, Tanino T, Talukder MR, Kondo A, Fukuda H (2007) Immobilized recombinant Aspergillus oryzae expressing heterologous lipase: an efficient whole-cell biocatalyst for enantioselective transesterification in non-aqueous medium. J Mol Catal B: Enzym 48:33–37CrossRef Tamalampudi S, Hama S, Tanino T, Talukder MR, Kondo A, Fukuda H (2007) Immobilized recombinant Aspergillus oryzae expressing heterologous lipase: an efficient whole-cell biocatalyst for enantioselective transesterification in non-aqueous medium. J Mol Catal B: Enzym 48:33–37CrossRef
113.
go back to reference Pera LM, Romero CM, Baigori MD, Castro GR (2006) Catalytic properties of lipase extracts from Aspergillus niger. Food Technol Biotechnol 44:247–252 Pera LM, Romero CM, Baigori MD, Castro GR (2006) Catalytic properties of lipase extracts from Aspergillus niger. Food Technol Biotechnol 44:247–252
114.
go back to reference Messias JM, Da Costa BZ, De Lima VMG, Giese C, Dekker RFH, Barbosa ADM (2011) Lipases microbianas: Produção, propriedades e aplicações biotecnológicas. Semin Ciências Exatas e Tecnológicas 32:213–234CrossRef Messias JM, Da Costa BZ, De Lima VMG, Giese C, Dekker RFH, Barbosa ADM (2011) Lipases microbianas: Produção, propriedades e aplicações biotecnológicas. Semin Ciências Exatas e Tecnológicas 32:213–234CrossRef
115.
go back to reference Ding Y, Ni X, Gu M, Li S, Huang H, Hu Y (2015) Knoevenagel condensation of aromatic aldehydes with active methylene compounds catalyzed by lipoprotein lipase. Catal Commun 64:101–104CrossRef Ding Y, Ni X, Gu M, Li S, Huang H, Hu Y (2015) Knoevenagel condensation of aromatic aldehydes with active methylene compounds catalyzed by lipoprotein lipase. Catal Commun 64:101–104CrossRef
116.
go back to reference Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859CrossRef Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859CrossRef
117.
go back to reference Božič M, Vivod V, Kavčič S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351CrossRef Božič M, Vivod V, Kavčič S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351CrossRef
118.
go back to reference Olsen H, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567CrossRef Olsen H, Falholt P (1998) The role of enzymes in modern detergency. J Surfactant Deterg 1:555–567CrossRef
119.
go back to reference Nagarajan S (2012) New tools for exploring old friends-microbial lipases. Appl Biochem Biotechnol 168:1163–1196CrossRef Nagarajan S (2012) New tools for exploring old friends-microbial lipases. Appl Biochem Biotechnol 168:1163–1196CrossRef
120.
go back to reference Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844 Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844
121.
go back to reference Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662CrossRef Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662CrossRef
122.
go back to reference Crooks GE, Rees GD, Robinson BH, Svensson M, Stephenson GR (1995) Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor-miehei lipases in Aot-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity. Biotechnol Bioeng 48:78–88CrossRef Crooks GE, Rees GD, Robinson BH, Svensson M, Stephenson GR (1995) Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor-miehei lipases in Aot-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity. Biotechnol Bioeng 48:78–88CrossRef
123.
go back to reference Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174. doi:10.1002/bab.1142CrossRef Shi H, Meng Y, Yang M, Zhang Q, Meng Y (2014) Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem 61:165–174. doi:10.1002/bab.1142CrossRef
124.
go back to reference Saisubramanian N, Edwinoliver NG, Nandakumar N, Kamini NR, Puvanakrishnan R (2006) Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. J Ind Microbiol Biotechnol 33:669–676CrossRef Saisubramanian N, Edwinoliver NG, Nandakumar N, Kamini NR, Puvanakrishnan R (2006) Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. J Ind Microbiol Biotechnol 33:669–676CrossRef
125.
go back to reference Saxena RK, Davidson WS, Sheoran A, Giri B (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247CrossRef Saxena RK, Davidson WS, Sheoran A, Giri B (2003) Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39:239–247CrossRef
126.
go back to reference Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2:17CrossRef Sarkar D, Shimizu K (2015) An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresour Bioprocess 2:17CrossRef
127.
go back to reference Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. Methods Mol Biol 861:471–483CrossRef Fan X, Niehus X, Sandoval G (2012) Lipases as biocatalyst for biodiesel production. Methods Mol Biol 861:471–483CrossRef
128.
go back to reference Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16CrossRef Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification – current state and perspectives. Renew Energy 39:10–16CrossRef
129.
go back to reference Chen X, Du W, Liu D, Ding F (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83:71–76CrossRef Chen X, Du W, Liu D, Ding F (2008) Lipase-mediated methanolysis of soybean oils for biodiesel production. J Chem Technol Biotechnol 83:71–76CrossRef
130.
go back to reference Talukder MR, Lee HZS, Low RF, Pei-lyn LC, Warzecha D, Wu J (2013) Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. J Mol Catal B: Enzym 89:108–113CrossRef Talukder MR, Lee HZS, Low RF, Pei-lyn LC, Warzecha D, Wu J (2013) Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. J Mol Catal B: Enzym 89:108–113CrossRef
Metadata
Title
Aspergillus Lipases: Biotechnological and Industrial Application
Authors
Fabiano Jares Contesini
Felipe Calzado
Jose Valdo Madeira Jr.
Marcelo Ventura Rubio
Mariane Paludetti Zubieta
Ricardo Rodrigues de Melo
Thiago Augusto Gonçalves
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-25001-4_17