Skip to main content
Top
Published in:

2020 | OriginalPaper | Chapter

Assessing Attribution Maps for Explaining CNN-Based Vertebral Fracture Classifiers

Authors : Eren Bora Yilmaz, Alexander Oliver Mader, Tobias Fricke, Jaime Peña, Claus-Christian Glüer, Carsten Meyer

Published in: Interpretable and Annotation-Efficient Learning for Medical Image Computing

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automated evaluation of vertebral fracture status on computed tomography (CT) scans acquired for various purposes (opportunistic CT) may substantially enhance vertebral fracture detection rate. Convolutional neural networks (CNNs) have shown promising performance in numerous tasks but their black box nature may hinder acceptance by physicians. We aim (a) to evaluate CNN architectures for osteoporotic fracture discrimination as part of a pipeline localizing and classifying vertebrae in CT images and (b) to evaluate the benefit of using attribution maps to explain a network’s decision. Training different model architectures on 3D patches containing vertebrae, we show that CNNs permit highly accurate discrimination of the fracture status of individual vertebrae. Explanations were computed using selected attribution methods: Gradient, Gradient * Input, Guided BackProp, and SmoothGrad algorithms. Quantitative and visual tests were conducted to evaluate the meaningfulness of the explanations (sanity checks). The explanations were found to depend on the model architecture, the realization of the parameters, and the precise position of the target object of interest.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We also conducted experiments with a 3D ResNet18 variant  [7] that are out of scope for this publication but are in line with the presented results.
 
2
Other correlation measures (Pearson and Spearman coefficients) lead to similar conclusions.
 
Literature
1.
go back to reference SpineAnalyzer. Optasia Medical Ltd., Cheadle Hulme, United Kingdom (2013) SpineAnalyzer. Optasia Medical Ltd., Cheadle Hulme, United Kingdom (2013)
2.
go back to reference Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 9525–9536. Curran Associates Inc. (2018) Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, Montréal, Canada, pp. 9525–9536. Curran Associates Inc. (2018)
3.
go back to reference Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Gradient-based attribution methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 169–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_9CrossRef Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Gradient-based attribution methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 169–191. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-28954-6_​9CrossRef
4.
go back to reference Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher - layer features of a deep network. Technical report, Univeristé de Montréal (2009) Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher - layer features of a deep network. Technical report, Univeristé de Montréal (2009)
5.
go back to reference Genant, H.K., Wu, C.Y., van Kuijk, C., Nevitt, M.C.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)CrossRef Genant, H.K., Wu, C.Y., van Kuijk, C., Nevitt, M.C.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)CrossRef
6.
go back to reference Glüer, C.C., et al.: New horizons for the in vivo assessment of major aspects of bone quality microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium. Osteologie 22, 223–233 (2013)CrossRef Glüer, C.C., et al.: New horizons for the in vivo assessment of major aspects of bone quality microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium. Osteologie 22, 223–233 (2013)CrossRef
8.
go back to reference Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S.: Conditioned variational auto-encoder for detecting osteoporotic vertebral fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 29–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39752-4_3CrossRef Husseini, M., Sekuboyina, A., Bayat, A., Menze, B.H., Loeffler, M., Kirschke, J.S.: Conditioned variational auto-encoder for detecting osteoporotic vertebral fractures. In: Cai, Y., Wang, L., Audette, M., Zheng, G., Li, S. (eds.) CSI 2019. LNCS, vol. 11963, pp. 29–38. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-39752-4_​3CrossRef
9.
go back to reference Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25CrossRef Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://​doi.​org/​10.​1007/​978-3-319-75238-9_​25CrossRef
10.
go back to reference Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, San Diego, May 2015 Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, San Diego, May 2015
13.
go back to reference Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Uncertain Artificial Intelligence, Monterey, California, pp. 876–885. AUAI Press, Corvallis, March 2018 Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. In: Uncertain Artificial Intelligence, Monterey, California, pp. 876–885. AUAI Press, Corvallis, March 2018
14.
go back to reference Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not Just a Black Box: Learning Important Features Through Propagating Activation Differences (2016) Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not Just a Black Box: Learning Important Features Through Propagating Activation Differences (2016)
15.
go back to reference Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise (2017). arXiv:Learning Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise (2017). arXiv:​Learning
16.
go back to reference Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: International Conference on Learning Representations (2015) Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: International Conference on Learning Representations (2015)
17.
go back to reference Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018)CrossRef Tomita, N., Cheung, Y.Y., Hassanpour, S.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput. Biol. Med. 98, 8–15 (2018)CrossRef
Metadata
Title
Assessing Attribution Maps for Explaining CNN-Based Vertebral Fracture Classifiers
Authors
Eren Bora Yilmaz
Alexander Oliver Mader
Tobias Fricke
Jaime Peña
Claus-Christian Glüer
Carsten Meyer
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-61166-8_1

Premium Partner