Skip to main content
Top

2023 | OriginalPaper | Chapter

8. Assessing Smartness of Automotive Industry: An Importance-Performance Analysis

Authors : Sahar Valipour Parkouhi, Abdolhamid Safaei Ghadikolaei, Hamidreza Fallah Lajimi, Negin Salimi

Published in: Advances in Best-Worst Method

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The automotive industry, like other industries, has been affected by the fourth industrial revolution. The intelligentization of manufacturing systems in the automotive industry is one of the achievements of this industrial revolution. Implementing a new manufacturing system requires continuous attention to the variables and conditions called Critical Success Factors (CSF). To successfully implement smart manufacturing, first, it is essential to assess the smartness level of an industry to have a better picture of that. To do this assessment, the importance of CSFs should be determined. Then the industry’s current performance should be evaluated based on CSFs. This assessment provides managers with a clear understanding of the condition of the industry, which can influence the effectiveness of their decisions. Therefore, this research aims to identify CSFs and evaluate the automotive industry’s performance. One approach to study this is using an importance-performance analysis (IPA). This approach is applied to the case of Iran’s two largest car manufacturers automotive industry. When studying importance, the Best-Worst Method is used. Due to incomplete information and uncertainty in the field of smart manufacturing, interval numbers have been used for more detailed analysis. Our results showed that although the two car manufacturers have performed relatively well in some factors, they have not performed well in important ones, such as customization and digitization of products and required technological infrastructure for using Industry 4.0. So, it seems these need to change the priority of these two care manufacturers’ attention to CSFs of smart manufacturing implementation. The results of this research can be suitable and useful for the managers of car manufacturers in Iran and other countries similar to Iran in terms of economic, political, and social conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shahbazi, Z., & Byun, Y. C. (2021). Smart manufacturing real-time analysis based on blockchain and machine learning approaches. Applied Sciences, 11(8), 3535. Shahbazi, Z., & Byun, Y. C. (2021). Smart manufacturing real-time analysis based on blockchain and machine learning approaches. Applied Sciences, 11(8), 3535.
2.
go back to reference De Felice, F., Petrillo, A., & Zomparelli, F. (2018). Prospective design of smart manufacturing: An Italian pilot case study. Manufacturing Letter, 15, 81–85.CrossRef De Felice, F., Petrillo, A., & Zomparelli, F. (2018). Prospective design of smart manufacturing: An Italian pilot case study. Manufacturing Letter, 15, 81–85.CrossRef
3.
go back to reference Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs—A review and empirical investigation. International Journal of Production Economics, 229, 107853. Kamble, S. S., Gunasekaran, A., Ghadge, A., & Raut, R. (2020). A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs—A review and empirical investigation. International Journal of Production Economics, 229, 107853.
4.
go back to reference Vater, J., Harscheidt, L., & Knoll, A. (2019). Smart manufacturing with prescriptive analytics. In 2019 8th international conference on industrial technology and management (ICITM) (pp. 224–228). IEEE. Vater, J., Harscheidt, L., & Knoll, A. (2019). Smart manufacturing with prescriptive analytics. In 2019 8th international conference on industrial technology and management (ICITM) (pp. 224–228). IEEE.
5.
go back to reference Tortorella, G., Kurnia, S., Trentin, M., Oliveira, G. A., & Setti, D. (2022). Industry 4.0: What is the relationship between manufacturing strategies, critical success factors and technology adoption? Journal of Manufacturing Technology Management (ahead-of-print). Tortorella, G., Kurnia, S., Trentin, M., Oliveira, G. A., & Setti, D. (2022). Industry 4.0: What is the relationship between manufacturing strategies, critical success factors and technology adoption? Journal of Manufacturing Technology Management (ahead-of-print).
6.
go back to reference Gruber, M., & Sharon T. (2019). Game-changing technologies for automotive. Gruber, M., & Sharon T. (2019). Game-changing technologies for automotive.
7.
go back to reference Hottenrott, A., Schiffer, M., & Grunow, M. (2022). Flexible assembly layouts in smart manufacturing: An impact assessment for the automotive industry. The Institute of Industrial and Systems Engine Transactions, 1–16. Hottenrott, A., Schiffer, M., & Grunow, M. (2022). Flexible assembly layouts in smart manufacturing: An impact assessment for the automotive industry. The Institute of Industrial and Systems Engine Transactions, 1–16.
8.
go back to reference Suleiman, Z., Shaikholla, S., Dikhanbayeva, D., Shehab, E., & Turkyilmaz, A. (2022). Industry 4.0: Clustering of concepts and characteristics. Cogent Engineering, 9(1), 2034264. Suleiman, Z., Shaikholla, S., Dikhanbayeva, D., Shehab, E., & Turkyilmaz, A. (2022). Industry 4.0: Clustering of concepts and characteristics. Cogent Engineering, 9(1), 2034264.
9.
go back to reference Bogoviz, A. V. (2020). Industry 4.0 as a new vector of growth and development of the knowledge economy. In Artificial intelligence: Anthropogenic revolution of the 21st century (pp. 88–97). Bogoviz, A. V. (2020). Industry 4.0 as a new vector of growth and development of the knowledge economy. In Artificial intelligence: Anthropogenic revolution of the 21st century (pp. 88–97).
10.
go back to reference Khanna, M. S., Sidhu, H. J. S., & Bansal, R. (2020). Industry 4.0: A study of India’s readiness as preferred investment destination in automotive and auto component industry. In 2020 sixth international conference on parallel, distributed and grid computing (PDGC) (pp. 557–560). IEEE. Khanna, M. S., Sidhu, H. J. S., & Bansal, R. (2020). Industry 4.0: A study of India’s readiness as preferred investment destination in automotive and auto component industry. In 2020 sixth international conference on parallel, distributed and grid computing (PDGC) (pp. 557–560). IEEE.
11.
go back to reference Ling, Y. M., Hamid, N. A. A., & Te Chuan, L. (2020). Is Malaysia ready for Industry 4.0? Issues and challenges in manufacturing industry. International Journal of Integrated Engineering, 12(7), 134–150. Ling, Y. M., Hamid, N. A. A., & Te Chuan, L. (2020). Is Malaysia ready for Industry 4.0? Issues and challenges in manufacturing industry. International Journal of Integrated Engineering, 12(7), 134–150.
12.
go back to reference Shukla, M., & Shankar, R. (2022). Modeling of critical success factors for adoption of smart manufacturing system in Indian SMEs: An integrated approach. Opsearch, 59(4), 1271–1303.CrossRef Shukla, M., & Shankar, R. (2022). Modeling of critical success factors for adoption of smart manufacturing system in Indian SMEs: An integrated approach. Opsearch, 59(4), 1271–1303.CrossRef
13.
go back to reference Narwane, V. S., Raut, R. D., Gardas, B. B., Narkhede, B. E., & Awasthi, A. (2022). Examining smart manufacturing challenges in the context of micro, small and medium enterprises. International Journal of Computer Integrated Manufacturing, 35(12), 1395–1412.CrossRef Narwane, V. S., Raut, R. D., Gardas, B. B., Narkhede, B. E., & Awasthi, A. (2022). Examining smart manufacturing challenges in the context of micro, small and medium enterprises. International Journal of Computer Integrated Manufacturing, 35(12), 1395–1412.CrossRef
14.
go back to reference Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of Manufacturing Systems, 49, 215–225.CrossRef Moghaddam, M., Cadavid, M. N., Kenley, C. R., & Deshmukh, A. V. (2018). Reference architectures for smart manufacturing: A critical review. Journal of Manufacturing Systems, 49, 215–225.CrossRef
15.
go back to reference Tay, S. I., Alipal, J., & Lee, T. C. (2021). Industry 4.0: Current practice and challenges in Malaysian manufacturing firms. Technology in Society, 67, 101749. Tay, S. I., Alipal, J., & Lee, T. C. (2021). Industry 4.0: Current practice and challenges in Malaysian manufacturing firms. Technology in Society, 67, 101749.
16.
go back to reference Benotsmane, R., & György, D. L. (2019). Economic, social impacts and operation of smart factories in Industry 4.0 focusing on simulation and artificial intelligence of collaborating robots. Social Sciences, 8(5), 143. Benotsmane, R., & György, D. L. (2019). Economic, social impacts and operation of smart factories in Industry 4.0 focusing on simulation and artificial intelligence of collaborating robots. Social Sciences, 8(5), 143.
17.
go back to reference Kumar, R., & Singh, H. (2018). Exploring the success factors for examining the potential of manufacturing system output. Benchmarking. An International Journal, 25(4), 1171–1193.CrossRef Kumar, R., & Singh, H. (2018). Exploring the success factors for examining the potential of manufacturing system output. Benchmarking. An International Journal, 25(4), 1171–1193.CrossRef
18.
go back to reference Banik, A., Taqi, H. M. M., Ali, S. M., Ahmed, S., Garshasbi, M., & Kabir, G. (2022). Critical success factors for implementing green supply chain management in the electronics industry: An emerging economy case. International Journal of Logistics Research and Applications, 25(4–5), 493–520.CrossRef Banik, A., Taqi, H. M. M., Ali, S. M., Ahmed, S., Garshasbi, M., & Kabir, G. (2022). Critical success factors for implementing green supply chain management in the electronics industry: An emerging economy case. International Journal of Logistics Research and Applications, 25(4–5), 493–520.CrossRef
19.
go back to reference Trkman, P. (2010). The critical success factors of business process management. International Journal of Information Management, 30(2), 125–134.CrossRef Trkman, P. (2010). The critical success factors of business process management. International Journal of Information Management, 30(2), 125–134.CrossRef
20.
go back to reference Pozzi, R., Rossi, T., & Secchi, R. (2023). Industry 4.0 technologies: Critical success factors for implementation and improvements in manufacturing companies. Production Planning & Control, 34(2), 139–158. Pozzi, R., Rossi, T., & Secchi, R. (2023). Industry 4.0 technologies: Critical success factors for implementation and improvements in manufacturing companies. Production Planning & Control, 34(2), 139–158.
21.
go back to reference Sony, M., & Naik, S. (2020). Critical factors for the successful implementation of Industry 4.0: A review and future research direction. Production Planning & Control, 31(10), 799–815. Sony, M., & Naik, S. (2020). Critical factors for the successful implementation of Industry 4.0: A review and future research direction. Production Planning & Control, 31(10), 799–815.
22.
go back to reference Hakim, I. M., Singgih, M. L., & Gunarta, I. K. (2022). Evaluating critical success factors for implementation of internet of things (IoT) using DEMATEL: A case of Indonesian automotive company. In Proceedings of the 2022 international conference on engineering and information technology for sustainable industry (pp. 1–7). Hakim, I. M., Singgih, M. L., & Gunarta, I. K. (2022). Evaluating critical success factors for implementation of internet of things (IoT) using DEMATEL: A case of Indonesian automotive company. In Proceedings of the 2022 international conference on engineering and information technology for sustainable industry (pp. 1–7).
23.
go back to reference Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers & Industrial Engineering, 175, 108815.CrossRef Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers & Industrial Engineering, 175, 108815.CrossRef
24.
go back to reference Kayikci, Y., Kazancoglu, Y., Gozacan-Chase, N., Lafci, C., & Batista, L. (2022). Assessing smart circular supply chain readiness and maturity level of small and medium-sized enterprises. Journal of Business Research, 149, 375–392.CrossRef Kayikci, Y., Kazancoglu, Y., Gozacan-Chase, N., Lafci, C., & Batista, L. (2022). Assessing smart circular supply chain readiness and maturity level of small and medium-sized enterprises. Journal of Business Research, 149, 375–392.CrossRef
25.
go back to reference Nguyen, T. Q., Ngo, L. T. T., Huynh, N. T., Quoc, T. L., & Hoang, L. V. (2022). Assessing port service quality: An application of the extension fuzzy AHP and importance-performance analysis. PLoS ONE, 17(2), e0264590.CrossRef Nguyen, T. Q., Ngo, L. T. T., Huynh, N. T., Quoc, T. L., & Hoang, L. V. (2022). Assessing port service quality: An application of the extension fuzzy AHP and importance-performance analysis. PLoS ONE, 17(2), e0264590.CrossRef
26.
go back to reference Salimi, N. (2021). Opportunity recognition for entrepreneurs based on a business model for sustainability: A systematic approach and its application in the Dutch dairy farming sector. IEEE Transactions on Engineering Management, 1–17. Salimi, N. (2021). Opportunity recognition for entrepreneurs based on a business model for sustainability: A systematic approach and its application in the Dutch dairy farming sector. IEEE Transactions on Engineering Management, 1–17.
27.
go back to reference Anbuudayasankar, S. P., Srikanthan, R., Karthik, M., Nair, P. R., Sivakarthik, N., & Indukumar, P. (2020). Cloud-based technology for small and medium scale enterprises: A decision-making paradigm using IPA, AHP and fuzzy-AHP techniques. International Journal of Integrated Supply Management, 13(4), 335–352.CrossRef Anbuudayasankar, S. P., Srikanthan, R., Karthik, M., Nair, P. R., Sivakarthik, N., & Indukumar, P. (2020). Cloud-based technology for small and medium scale enterprises: A decision-making paradigm using IPA, AHP and fuzzy-AHP techniques. International Journal of Integrated Supply Management, 13(4), 335–352.CrossRef
28.
go back to reference Chung, C. C., Chao, L. C., & Lou, S. J. (2016). The establishment of a green supplier selection and guidance mechanism with the ANP and IPA. Sustainability, 8(3), 259.CrossRef Chung, C. C., Chao, L. C., & Lou, S. J. (2016). The establishment of a green supplier selection and guidance mechanism with the ANP and IPA. Sustainability, 8(3), 259.CrossRef
29.
go back to reference Stabilini, S., Menini, A., & Pifferi, S. (2021). Anion and cation permeability of the mouse TMEM16F calcium-activated channel. International Journal of Molecular Sciences, 22(16), 8578.CrossRef Stabilini, S., Menini, A., & Pifferi, S. (2021). Anion and cation permeability of the mouse TMEM16F calcium-activated channel. International Journal of Molecular Sciences, 22(16), 8578.CrossRef
30.
go back to reference Suzianti, A., Haqqi, F. R., & Fathia, S. N. (2022). Strategic recommendations for financial technology service development: A comprehensive risk-benefit IPA-Kano analysis. Journal of Modelling in Management, 17(4), 1481–1503.CrossRef Suzianti, A., Haqqi, F. R., & Fathia, S. N. (2022). Strategic recommendations for financial technology service development: A comprehensive risk-benefit IPA-Kano analysis. Journal of Modelling in Management, 17(4), 1481–1503.CrossRef
31.
go back to reference Chen, K. S., Lin, K. P., & Lin, L. J. (2020). Evaluating the environmental protection strategy of a printed circuit board manufacturer using a Tw fuzzy importance performance analysis with Google Trends. Expert Systems with Applications, 156. Chen, K. S., Lin, K. P., & Lin, L. J. (2020). Evaluating the environmental protection strategy of a printed circuit board manufacturer using a Tw fuzzy importance performance analysis with Google Trends. Expert Systems with Applications, 156.
32.
go back to reference Rezaei, J. (2015). Best–worst multi-criteria decision-making method. Omega, 53, 49–57.CrossRef Rezaei, J. (2015). Best–worst multi-criteria decision-making method. Omega, 53, 49–57.CrossRef
33.
go back to reference Rezaei, J. (2020). A concentration ratio for nonlinear best worst method. International Journal of Information Technology & Decision Making, 19(03), 891–907.CrossRef Rezaei, J. (2020). A concentration ratio for nonlinear best worst method. International Journal of Information Technology & Decision Making, 19(03), 891–907.CrossRef
34.
go back to reference Rezaei, J. (2016). Best–worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.CrossRef Rezaei, J. (2016). Best–worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.CrossRef
35.
go back to reference Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis. Society for Industrial and Applied Mathematics Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis. Society for Industrial and Applied Mathematics
36.
go back to reference Wang, Y. M., Yang, J. B., & Xu, D. L. (2005). A preference aggregation method through the estimation of utility intervals. Computers & Operations Research, 32(8), 2027–2049.CrossRef Wang, Y. M., Yang, J. B., & Xu, D. L. (2005). A preference aggregation method through the estimation of utility intervals. Computers & Operations Research, 32(8), 2027–2049.CrossRef
37.
go back to reference Ngah, A. H., Zainuddin, Y., & Thurasamy, R. (2015). Barriers and enablers in adopting of Halal warehousing. Journal of Islamic Marketing. Ngah, A. H., Zainuddin, Y., & Thurasamy, R. (2015). Barriers and enablers in adopting of Halal warehousing. Journal of Islamic Marketing.
38.
go back to reference Lukman, H. (2015, December). Conceptual framework of cloud computing implementation on start-up companies with approach. In IOP conference series: Materials science and engineering (Vol. 1007, No. 1, p. 012176). IOP Publishing. Lukman, H. (2015, December). Conceptual framework of cloud computing implementation on start-up companies with approach. In IOP conference series: Materials science and engineering (Vol. 1007, No. 1, p. 012176). IOP Publishing.
39.
go back to reference Bhatia, M. S., & Saurabh, K. (2020). Critical success factors of Industry 4.0 in automotive manufacturing industry. IEEE Transactions on Engineering Management, 1–15. Bhatia, M. S., & Saurabh, K. (2020). Critical success factors of Industry 4.0 in automotive manufacturing industry. IEEE Transactions on Engineering Management, 1–15.
40.
go back to reference Shinohara, A. C., da Silva, E. H. D. R., de Lima, E. P., Deschamps, F., & da Costa, S. E. G. (2017). Critical success factors for digital manufacturing implementation in the context of industry 4.0. In IIE annual conference. Proceedings (pp. 199–204). Institute of Industrial and Systems Engineers (IISE). Shinohara, A. C., da Silva, E. H. D. R., de Lima, E. P., Deschamps, F., & da Costa, S. E. G. (2017). Critical success factors for digital manufacturing implementation in the context of industry 4.0. In IIE annual conference. Proceedings (pp. 199–204). Institute of Industrial and Systems Engineers (IISE).
41.
go back to reference Rad, F. F., Oghazi, P., Palmié, M., Chirumalla, K., Pashkevich, N., Patel, P. C., & Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management, 105, 268–293. Rad, F. F., Oghazi, P., Palmié, M., Chirumalla, K., Pashkevich, N., Patel, P. C., & Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management, 105, 268–293.
42.
go back to reference Al-Gumaei, K., Schuba, K., Friesen, A., Heymann, S., Pieper, C., Pethig, F., & Schriegel, S. (2018, September). A survey of internet of things and big data integrated solutions for Industrie 4.0. In 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA) (Vol. 1, pp. 1417–1424). IEEE. Al-Gumaei, K., Schuba, K., Friesen, A., Heymann, S., Pieper, C., Pethig, F., & Schriegel, S. (2018, September). A survey of internet of things and big data integrated solutions for Industrie 4.0. In 2018 IEEE 23rd international conference on emerging technologies and factory automation (ETFA) (Vol. 1, pp. 1417–1424). IEEE.
43.
go back to reference Brodeur, J., Pellerin, R., & Deschamps, I. (2022). Operationalization of critical success factors to manage the Industry 4.0 transformation of manufacturing SMEs. Sustainability, 14(14), 8954. Brodeur, J., Pellerin, R., & Deschamps, I. (2022). Operationalization of critical success factors to manage the Industry 4.0 transformation of manufacturing SMEs. Sustainability, 14(14), 8954.
44.
go back to reference Bandara, O., Kasuni, V., & Ruwan, W. (2019). A Model for assessing maturity of Industry 4.0 in the banking sector. In Proceedings of the international conference on industrial engineering and operations management 2019, Mar (pp. 1141–1150). Bandara, O., Kasuni, V., & Ruwan, W. (2019). A Model for assessing maturity of Industry 4.0 in the banking sector. In Proceedings of the international conference on industrial engineering and operations management 2019, Mar (pp. 1141–1150).
45.
go back to reference Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384–1400. Moeuf, A., Lamouri, S., Pellerin, R., Tamayo-Giraldo, S., Tobon-Valencia, E., & Eburdy, R. (2020). Identification of critical success factors, risks and opportunities of Industry 4.0 in SMEs. International Journal of Production Research, 58(5), 1384–1400.
46.
go back to reference Rauch, E., Unterhofer, M., Rojas, R. A., Gualtieri, L., Woschank, M., & Matt, D. T. (2020). A maturity level-based assessment tool to enhance the implementation of Industry 4.0 in small and medium-sized enterprises. Sustainability, 12(9), 3559. Rauch, E., Unterhofer, M., Rojas, R. A., Gualtieri, L., Woschank, M., & Matt, D. T. (2020). A maturity level-based assessment tool to enhance the implementation of Industry 4.0 in small and medium-sized enterprises. Sustainability, 12(9), 3559.
47.
go back to reference Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of Manufacturing Systems, 49, 194–214. Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). Journal of Manufacturing Systems, 49, 194–214.
48.
go back to reference Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175.CrossRef Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175.CrossRef
49.
go back to reference Rajput, S., & Singh, S. P. (2018). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision. Rajput, S., & Singh, S. P. (2018). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision.
50.
go back to reference Sobin, C. C. (2020). A survey on architecture, protocols and challenges in IoT. Wireless Personal Communications, 112(3), 1383–1429.CrossRef Sobin, C. C. (2020). A survey on architecture, protocols and challenges in IoT. Wireless Personal Communications, 112(3), 1383–1429.CrossRef
51.
go back to reference Matt, D. T., Modrák, V., & Zsifkovits, H. (2020). Industry 4.0 for SMEs: Challenges, opportunities and requirements. Matt, D. T., Modrák, V., & Zsifkovits, H. (2020). Industry 4.0 for SMEs: Challenges, opportunities and requirements.
52.
go back to reference Asdecker, B., & Felch, V. (2018). Development of an Industry 4.0 maturity model for the delivery process in supply chains. Journal of Modelling in Management. Asdecker, B., & Felch, V. (2018). Development of an Industry 4.0 maturity model for the delivery process in supply chains. Journal of Modelling in Management.
53.
go back to reference Dreyer, S., Zeren, J., Lebek, B., & Breitner, M. H. (2018). Critical success factors for introducing smart services: A supplier’s perspective. In Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI), Lüneburg (pp. 410–421). Dreyer, S., Zeren, J., Lebek, B., & Breitner, M. H. (2018). Critical success factors for introducing smart services: A supplier’s perspective. In Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI), Lüneburg (pp. 410–421).
Metadata
Title
Assessing Smartness of Automotive Industry: An Importance-Performance Analysis
Authors
Sahar Valipour Parkouhi
Abdolhamid Safaei Ghadikolaei
Hamidreza Fallah Lajimi
Negin Salimi
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-40328-6_8

Premium Partner