Skip to main content
Top

2020 | OriginalPaper | Chapter

9. Assessment of Smart Healthcare Services

Authors : Desheng Dash Wu, David L. Olson

Published in: Pandemic Risk Management in Operations and Finance

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter considers organizational adoption of smart healthcare services. Pandemic planning would benefit from accessing some of the many technology systems available to aid in operations and planning. A technical acceptance model is adopted as a means to consider factors important in the adoption of technology. Chinese doctors were surveyed to gain attitudes and perceptions of usefulness of healthcare technology. Perceived usefulness and experience were found to be important in intention to adopt healthcare systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.CrossRef Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.CrossRef
2.
go back to reference Hsieh, P.-J. (2015). Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. International Journal of Medical Informatics, 84(1), 1–14.CrossRef Hsieh, P.-J. (2015). Physicians’ acceptance of electronic medical records exchange: An extension of the decomposed TPB model with institutional trust and perceived risk. International Journal of Medical Informatics, 84(1), 1–14.CrossRef
3.
go back to reference Khor, K. S., & Hazen, B. T. (2017). Remanufactured products purchase intentions and behavior: Evidence from Malaysia. International Journal of Production Research, 55(8), 2149–2162.CrossRef Khor, K. S., & Hazen, B. T. (2017). Remanufactured products purchase intentions and behavior: Evidence from Malaysia. International Journal of Production Research, 55(8), 2149–2162.CrossRef
4.
go back to reference Ahnadi, H., Nilashi, M., Shahmoradi, L., & Ibrahim, O. (2017). Hospital information system adoption: Expert perspectives on an adoption framework for Malaysian public hospitals. Computers in Human Behavior, 67, 161–189.CrossRef Ahnadi, H., Nilashi, M., Shahmoradi, L., & Ibrahim, O. (2017). Hospital information system adoption: Expert perspectives on an adoption framework for Malaysian public hospitals. Computers in Human Behavior, 67, 161–189.CrossRef
5.
go back to reference Beglaryan, M., Petrosyan, V., & Bunker, E. (2017). Development of a tripolar model of technology acceptance: Hospital-based physicians’ perspective on HER. International Journal of Medical Informatics, 102, 50–61.CrossRef Beglaryan, M., Petrosyan, V., & Bunker, E. (2017). Development of a tripolar model of technology acceptance: Hospital-based physicians’ perspective on HER. International Journal of Medical Informatics, 102, 50–61.CrossRef
6.
go back to reference Brown, W., Yen, P. Y., Rojas, M., & Schnall, R. (2013). Assessment of the health IT usability evaluation model (health-ITUEM) for evaluating mobile health (mHealth) technology. Journal of Biomedical Informatics, 46(6), 1080–1087.CrossRef Brown, W., Yen, P. Y., Rojas, M., & Schnall, R. (2013). Assessment of the health IT usability evaluation model (health-ITUEM) for evaluating mobile health (mHealth) technology. Journal of Biomedical Informatics, 46(6), 1080–1087.CrossRef
7.
go back to reference Lee, W., Xiong, L., & Hu, C. (2012). The effect of Facebook users’ arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management, 31(3), 819–827.CrossRef Lee, W., Xiong, L., & Hu, C. (2012). The effect of Facebook users’ arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management, 31(3), 819–827.CrossRef
8.
go back to reference Maio, R., Ru, Q., Wang, Z., Song, Y., Zhang, H., Sun, Q., & Jiang, Z. (2017). Factors that influence users’ adoption intention of mobile health: A structural equation modeling approach. International Journal of Production Research, 55(19), 5801–5815.CrossRef Maio, R., Ru, Q., Wang, Z., Song, Y., Zhang, H., Sun, Q., & Jiang, Z. (2017). Factors that influence users’ adoption intention of mobile health: A structural equation modeling approach. International Journal of Production Research, 55(19), 5801–5815.CrossRef
9.
go back to reference Venkatesh, V., & Davis, F. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481.CrossRef Venkatesh, V., & Davis, F. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451–481.CrossRef
10.
go back to reference Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information and Management, 36(1), 9–21.CrossRef Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information and Management, 36(1), 9–21.CrossRef
11.
go back to reference Morris, M. G., Hall, M., Davis, G. B., Davis, F. D., & Walton, S. M. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.CrossRef Morris, M. G., Hall, M., Davis, G. B., Davis, F. D., & Walton, S. M. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.CrossRef
12.
go back to reference Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2003). Understanding IT adoption decisions in small business: Integrating current theories. Information and Management, 40(4), 269–285.CrossRef Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2003). Understanding IT adoption decisions in small business: Integrating current theories. Information and Management, 40(4), 269–285.CrossRef
13.
go back to reference Bauer, R. A. (1967). Consumer behavior as risk taking? In Risk taking and information handling in consumer behavior (pp. 23–33). Boston: Graduate School of Business Administration, Harvard University. Bauer, R. A. (1967). Consumer behavior as risk taking? In Risk taking and information handling in consumer behavior (pp. 23–33). Boston: Graduate School of Business Administration, Harvard University.
14.
go back to reference Koudstaal, M., Sloof, R., & van Praag, M. (2016). Risk, undertainty, and entrepreneurship: Evidence from a lab-in-the-field experiment. Management Science, 62(10), 2897–2915.CrossRef Koudstaal, M., Sloof, R., & van Praag, M. (2016). Risk, undertainty, and entrepreneurship: Evidence from a lab-in-the-field experiment. Management Science, 62(10), 2897–2915.CrossRef
15.
go back to reference Tandon, U., Kiran, R., & Sah, A. N. (2016). Understanding online shopping adoption in India: Unified theory of acceptance and use of technology 2 (UTAUT2) with perceived risk application. Service Science, 8(4), 420–437.CrossRef Tandon, U., Kiran, R., & Sah, A. N. (2016). Understanding online shopping adoption in India: Unified theory of acceptance and use of technology 2 (UTAUT2) with perceived risk application. Service Science, 8(4), 420–437.CrossRef
16.
go back to reference Weiss, L., & Johar, G. V. (2013). Egocentric categorization and product judgment: Seeing your traits in what you own (and their opposite in what you don’t). Journal of Consumer Research, 40(1), 185–201.CrossRef Weiss, L., & Johar, G. V. (2013). Egocentric categorization and product judgment: Seeing your traits in what you own (and their opposite in what you don’t). Journal of Consumer Research, 40(1), 185–201.CrossRef
18.
go back to reference Moores, T. T. (2012). Towards an integrated model of IT acceptance in healthcare. Decision Support Systems, 53(3), 507–516.CrossRef Moores, T. T. (2012). Towards an integrated model of IT acceptance in healthcare. Decision Support Systems, 53(3), 507–516.CrossRef
19.
go back to reference Zhang, W.-G., Zhang, Q., Mizgier, K. J., & Zhang, Y. (2017). Integrating the customers’ perceived risks and benefits into the triple-channel retailing. International Journal of Medical Informatics, 108, 97–109.CrossRef Zhang, W.-G., Zhang, Q., Mizgier, K. J., & Zhang, Y. (2017). Integrating the customers’ perceived risks and benefits into the triple-channel retailing. International Journal of Medical Informatics, 108, 97–109.CrossRef
20.
go back to reference Chang, I.-C., & Hsu, H.-M. (2012). Predicting medical staff intention to use an online reporting system with modified unified theory of acceptance and use of technology. Telemedicine and E-Health, 18(1), 67–73.CrossRef Chang, I.-C., & Hsu, H.-M. (2012). Predicting medical staff intention to use an online reporting system with modified unified theory of acceptance and use of technology. Telemedicine and E-Health, 18(1), 67–73.CrossRef
21.
go back to reference Kingston, M. J., Evans, S. M., Smith, B. J., & Berry, J. G. (2004). Attitudes of doctors and nurses towards incident reporting: A qualitative analysis. The Medical Journal of Australia, 181, 36–39.CrossRef Kingston, M. J., Evans, S. M., Smith, B. J., & Berry, J. G. (2004). Attitudes of doctors and nurses towards incident reporting: A qualitative analysis. The Medical Journal of Australia, 181, 36–39.CrossRef
22.
go back to reference Gagnon, M. P., Ghandour, E. K., Kengne Talla, P., Dimonyan, D., Godin, G., Labrecque, M., Ouimet, M., & Rousseau, M. (2014). Electronic health record acceptance by physicians: Testing an integrated theoretical model. Journal of Biomedical Informatics, 48, 17–27.CrossRef Gagnon, M. P., Ghandour, E. K., Kengne Talla, P., Dimonyan, D., Godin, G., Labrecque, M., Ouimet, M., & Rousseau, M. (2014). Electronic health record acceptance by physicians: Testing an integrated theoretical model. Journal of Biomedical Informatics, 48, 17–27.CrossRef
23.
go back to reference Rosenkrantz, A. B., Sherwin, J., Prithiani, C. P., Ostrow, D., & Recht, M. P. (2016). Technology-assisted virtual consultation for medical imaging. Journal of the American College of Radiology, 13(8), 995–1002.CrossRef Rosenkrantz, A. B., Sherwin, J., Prithiani, C. P., Ostrow, D., & Recht, M. P. (2016). Technology-assisted virtual consultation for medical imaging. Journal of the American College of Radiology, 13(8), 995–1002.CrossRef
24.
go back to reference Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431.CrossRef Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431.CrossRef
25.
go back to reference Hair, J. F., Thomas, G., Hult, M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage. Hair, J. F., Thomas, G., Hult, M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage.
26.
go back to reference Cohen, J. (1977). Chi-square tests for goodness of fit and contingency tables. In Statistical power analysis for the behavioral sciences (2nd ed., pp. 215–271). New York: Academic Press.CrossRef Cohen, J. (1977). Chi-square tests for goodness of fit and contingency tables. In Statistical power analysis for the behavioral sciences (2nd ed., pp. 215–271). New York: Academic Press.CrossRef
27.
go back to reference Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.CrossRef Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.CrossRef
Metadata
Title
Assessment of Smart Healthcare Services
Authors
Desheng Dash Wu
David L. Olson
Copyright Year
2020
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-030-52197-4_9

Premium Partner