Skip to main content
Top

2018 | OriginalPaper | Chapter

Astrophysical Fluid Dynamics and Applications to Stellar Modeling

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The modeling of astrophysical objects poses a challenging multiscale multiphysics problem. Because of their large spatial extent, the description of physical processes dominating the formation, structure, and evolution of such objects is typically based on effective theories such as fluid dynamics or thermodynamics. The modeling ansatz resulting from this approach is the Euler equations in combination with appropriate source terms. In contrast to terrestrial systems, the astrophysical equations of state are usually more complex and the ranges of relevant scales in space, time, density, velocity etc., in the considered objects are orders of magnitude wider. Simulations therefore require an efficient description of physical effects, elaborate numerical techniques, and models of unresolved phenomena. We exemplify this by focusing on processes in stars. This multiphysics problem is characterized by coupling the compressible Euler equations to the simultaneous effects of gravity, nuclear reactions, hydrodynamic instabilities, and mixing processes in the stellar fluid. It implies a multis because the processes act on scales in space and time that can easily be separated by ten orders of magnitude. The traditional astrophysical approach to this challenge—one-dimensional models parametrizing the description of unresolved effects—lacks predictive power. The dramatic increase in computational power, however, enables multidimensional dynamical simulations. They pave the way to the next generation of stellar models and promise new insights into the physical processes in stars. We discuss to which degree the currently applied techniques are able to cope with the scale problems. Among other techniques, we point out the importance of finding algorithms that allow for efficient parallelization and the use of problem-adapted geometries of the discretization grids. Further progress critically depends on continuous improvement of the methods, and input from applied mathematics will play a key role in this development.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, AJ 116, 1009 (1998) A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, AJ 116, 1009 (1998)
3.
go back to reference S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, The Supernova Cosmology Project, ApJ 517, 565 (1999)CrossRef S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, The Supernova Cosmology Project, ApJ 517, 565 (1999)CrossRef
4.
go back to reference W. Hillebrandt, J.C. Niemeyer, ARA&A 38, 191 (2000) W. Hillebrandt, J.C. Niemeyer, ARA&A 38, 191 (2000)
5.
go back to reference W. Hillebrandt, M. Kromer, F.K. Röpke, A.J. Ruiter, Front. Phys. 8, 116 (2013)CrossRef W. Hillebrandt, M. Kromer, F.K. Röpke, A.J. Ruiter, Front. Phys. 8, 116 (2013)CrossRef
6.
go back to reference F. K. Röpke, W. Schmidt, in Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, ed. by W. Hillebrandt, F. Kupka (Springer, Berlin, 2009), pp. 255–289MATH F. K. Röpke, W. Schmidt, in Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, ed. by W. Hillebrandt, F. Kupka (Springer, Berlin, 2009), pp. 255–289MATH
7.
go back to reference M. Reinecke, W. Hillebrandt, J.C. Niemeyer, R. Klein, A. Gröbl, A&A 347, 724 (1999) M. Reinecke, W. Hillebrandt, J.C. Niemeyer, R. Klein, A. Gröbl, A&A 347, 724 (1999)
9.
go back to reference N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)CrossRef
10.
go back to reference M. Reinecke, W. Hillebrandt, J.C. Niemeyer, F. Röpke, W. Schmidt, D. Sauer, in Proceedings of the 11th Workshop on “Nuclear Astrophysics”, Ringberg Castle, ed. by W. Hillebrandt, E. Müller (Max-Planck-Institut für Astrophysik, Garching, 2002), MPA/P13, pp. 54–56 M. Reinecke, W. Hillebrandt, J.C. Niemeyer, F. Röpke, W. Schmidt, D. Sauer, in Proceedings of the 11th Workshop on “Nuclear Astrophysics”, Ringberg Castle, ed. by W. Hillebrandt, E. Müller (Max-Planck-Institut für Astrophysik, Garching, 2002), MPA/P13, pp. 54–56
12.
go back to reference F.K. Röpke, W. Hillebrandt, W. Schmidt, J.C. Niemeyer, S.I. Blinnikov, P.A. Mazzali, ApJ 668, 1132 (2007)CrossRef F.K. Röpke, W. Hillebrandt, W. Schmidt, J.C. Niemeyer, S.I. Blinnikov, P.A. Mazzali, ApJ 668, 1132 (2007)CrossRef
13.
go back to reference M. Fink, M. Kromer, I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, S.A. Sim, R. Pakmor, A.J. Ruiter, W. Hillebrandt, MNRAS 438, 1762 (2014) M. Fink, M. Kromer, I.R. Seitenzahl, F. Ciaraldi-Schoolmann, F.K. Röpke, S.A. Sim, R. Pakmor, A.J. Ruiter, W. Hillebrandt, MNRAS 438, 1762 (2014)
14.
go back to reference R. Kippenhahn, A. Weigert, A. Weiss, Stellar Structure and Evolution (Springer, Berlin, 2012)CrossRef R. Kippenhahn, A. Weigert, A. Weiss, Stellar Structure and Evolution (Springer, Berlin, 2012)CrossRef
15.
go back to reference W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F. Miczek, F.K. Röpke, J. Sci. Comput. 1–24 (2017) W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F. Miczek, F.K. Röpke, J. Sci. Comput. 1–24 (2017)
17.
go back to reference W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F.K. Röpke, in Workshop on Low Velocity Flows, Paris, 5–6 November 2015, ESAIM: Proceedings and Surveys, ed. by S. Dellacherie, et al., vol. 56 (2017). In print W. Barsukow, P.V.F. Edelmann, C. Klingenberg, F.K. Röpke, in Workshop on Low Velocity Flows, Paris, 5–6 November 2015, ESAIM: Proceedings and Surveys, ed. by S. Dellacherie, et al., vol. 56 (2017). In print
20.
21.
23.
go back to reference A.S. Almgren, J.B. Bell, M. Zingale, J. Phys. Conf. Ser. 78(1), 012085 (2007)CrossRef A.S. Almgren, J.B. Bell, M. Zingale, J. Phys. Conf. Ser. 78(1), 012085 (2007)CrossRef
25.
26.
go back to reference M. Viallet, T. Goffrey, I. Baraffe, D. Folini, C. Geroux, M.V. Popov, J. Pratt, R. Walder, A&A 586, A153 (2016) M. Viallet, T. Goffrey, I. Baraffe, D. Folini, C. Geroux, M.V. Popov, J. Pratt, R. Walder, A&A 586, A153 (2016)
28.
go back to reference C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Technical report, NASA Technical Memorandum (2001) C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Technical report, NASA Technical Memorandum (2001)
29.
go back to reference N. Hammer, F. Jamitzky, H. Satzger, M. Allalen, A. Block, A. Karmakar, M. Brehm, R. Bader, L. Iapichino, A. Ragagnin, V. Karakasis, D. Kranzlmüller, A. Bode, H. Huber, M. Kühn, R. Machado, D. Grünewald, P.V.F. Edelmann, F.K. Röpke, M. Wittmann, T. Zeiser, G. Wellein, G. Mathias, M. Schwörer, K. Lorenzen, C. Federrath, R. Klessen, K. Bamberg, H. Ruhl, F. Schornbaum, M. Bauer, A. Nikhil, J. Qi, H. Klimach, H. Stüben, A. Deshmukh, T. Falkenstein, K. Dolag, M. Petkova in Parallel Computing: On the Road to Exascale, Proceedings of the International Conference on Parallel Computing, ParCo 2015, 1–4 September 2015, Edinburgh, Scotland, UK, ed. by G.R. Joubert, H. Leather, M. Parsons, F.J. Peters, M. Sawyer. Advances in Parallel Computing, vol. 27 (IOS Press, 2016), pp. 827–836 N. Hammer, F. Jamitzky, H. Satzger, M. Allalen, A. Block, A. Karmakar, M. Brehm, R. Bader, L. Iapichino, A. Ragagnin, V. Karakasis, D. Kranzlmüller, A. Bode, H. Huber, M. Kühn, R. Machado, D. Grünewald, P.V.F. Edelmann, F.K. Röpke, M. Wittmann, T. Zeiser, G. Wellein, G. Mathias, M. Schwörer, K. Lorenzen, C. Federrath, R. Klessen, K. Bamberg, H. Ruhl, F. Schornbaum, M. Bauer, A. Nikhil, J. Qi, H. Klimach, H. Stüben, A. Deshmukh, T. Falkenstein, K. Dolag, M. Petkova in Parallel Computing: On the Road to Exascale, Proceedings of the International Conference on Parallel Computing, ParCo 2015, 1–4 September 2015, Edinburgh, Scotland, UK, ed. by G.R. Joubert, H. Leather, M. Parsons, F.J. Peters, M. Sawyer. Advances in Parallel Computing, vol. 27 (IOS Press, 2016), pp. 827–836
30.
31.
go back to reference V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, Int. J. Numer. Methods Fluids 81(2), 104 (2016)CrossRef V. Desveaux, M. Zenk, C. Berthon, C. Klingenberg, Int. J. Numer. Methods Fluids 81(2), 104 (2016)CrossRef
32.
go back to reference N. Ivanova, S. Justham, X. Chen, O. De Marco, C.L. Fryer, E. Gaburov, H. Ge, E. Glebbeek, Z. Han, X.D. Li, G. Lu, T. Marsh, P. Podsiadlowski, A. Potter, N. Soker, R. Taam, T.M. Tauris, E.P.J. van den Heuvel, R.F. Webbink, A&A Rev. 21, 59 (2013) N. Ivanova, S. Justham, X. Chen, O. De Marco, C.L. Fryer, E. Gaburov, H. Ge, E. Glebbeek, Z. Han, X.D. Li, G. Lu, T. Marsh, P. Podsiadlowski, A. Potter, N. Soker, R. Taam, T.M. Tauris, E.P.J. van den Heuvel, R.F. Webbink, A&A Rev. 21, 59 (2013)
33.
34.
go back to reference S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, ApJ 816(1), L9 (2016) S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, ApJ 816(1), L9 (2016)
35.
go back to reference R. Pakmor, A. Bauer, V. Springel, MNRAS 418, 1392 (2011) R. Pakmor, A. Bauer, V. Springel, MNRAS 418, 1392 (2011)
36.
go back to reference S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, E. Müller, MNRAS 462(1), L121 (2016) S.T. Ohlmann, F.K. Röpke, R. Pakmor, V. Springel, E. Müller, MNRAS 462(1), L121 (2016)
Metadata
Title
Astrophysical Fluid Dynamics and Applications to Stellar Modeling
Author
Friedrich K. Röpke
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-91548-7_40

Premium Partners