Skip to main content
Top
Published in: Journal of Computational Electronics 4/2016

16-09-2016

Asymmetric junctionless nanowire TFET with built-in \({n}^{+}\) source pocket emphasizing on energy band modification

Authors: Morteza Rahimian, Morteza Fathipour

Published in: Journal of Computational Electronics | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present a detailed study on a technique to realize a narrow and highly doped built-in \({n}^{+}\) source pocket in an asymmetric junctionless nanowire tunnel field-effect transistor (AJN-TFET). In the proposed structure, a built-in \({n}^{+}\) source pocket is created between the \({p}^{+}\) source and the channel without the need for any separate implantation or epitaxial growth. This leads to band diagram modification by providing a local minimum in the conduction band which results in tunneling width reduction at the source–channel interface in on-state. This leads to an abrupt transition between on- and off-state, improved subthreshold swing (SS) (38 mV/dec), and significant on-current enhancement (\(\sim 2000\) times) at low operating voltage compared with the conventional TFET. We further study the effect of the length of the built-in \({n}^{+}\) source pocket on the AJN-TFET characteristics. The proposed structure overcomes the difficulty in creating a narrow \({n}^{+}\) pocket and thus renders the AJN-TFET device more amenable for the future scaling trend needed in low-power applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rahimian, M., Orouji, A.A.: Nanoscale SiGe-on-insulator (SGOI) MOSFET with graded doping channel for improving leakage current and hot-carrier degradation. Superlattices Microstruct. 50, 667–679 (2011)CrossRef Rahimian, M., Orouji, A.A.: Nanoscale SiGe-on-insulator (SGOI) MOSFET with graded doping channel for improving leakage current and hot-carrier degradation. Superlattices Microstruct. 50, 667–679 (2011)CrossRef
2.
go back to reference Rahimian, M., Orouji, A.A., Aminbeidokhti, A.: A novel deep submicron SiGe-on-insulator (SGOI) MOSFET with modified channel band energy for electrical performance improvement. Curr. Appl. Phys. 13, 779–784 (2013)CrossRef Rahimian, M., Orouji, A.A., Aminbeidokhti, A.: A novel deep submicron SiGe-on-insulator (SGOI) MOSFET with modified channel band energy for electrical performance improvement. Curr. Appl. Phys. 13, 779–784 (2013)CrossRef
3.
go back to reference Orouji, A.A., Rahimian, M.: Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr. Appl. Phys. 12, 1366–1371 (2012)CrossRef Orouji, A.A., Rahimian, M.: Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr. Appl. Phys. 12, 1366–1371 (2012)CrossRef
4.
go back to reference Chang, H.Y., Adams, B., Chien, P.Y., Li, J., Woo, J.C.S.: Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans. Electron Devices 60(1), 92–96 (2013)CrossRef Chang, H.Y., Adams, B., Chien, P.Y., Li, J., Woo, J.C.S.: Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans. Electron Devices 60(1), 92–96 (2013)CrossRef
5.
go back to reference Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)CrossRef Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron Devices 58(1), 80–86 (2011)CrossRef
6.
go back to reference Tura, A., Zhang, Z., Liu, P., Xie, Y.H., Woo, J.C.S.: vertical silicon p–n–p–n tunnel n MOSFET With MBE-grown tunneling junction. IEEE Trans. Electron Devices 58(7), 1907–1913 (2011)CrossRef Tura, A., Zhang, Z., Liu, P., Xie, Y.H., Woo, J.C.S.: vertical silicon p–n–p–n tunnel n MOSFET With MBE-grown tunneling junction. IEEE Trans. Electron Devices 58(7), 1907–1913 (2011)CrossRef
7.
go back to reference Nikonov, D.E., Young, I.A.: Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Exp. Solid. State Comput. Devices Circuits 1, 3–11 (2015)CrossRef Nikonov, D.E., Young, I.A.: Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Exp. Solid. State Comput. Devices Circuits 1, 3–11 (2015)CrossRef
8.
go back to reference Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329–337 (2011)CrossRef Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329–337 (2011)CrossRef
9.
go back to reference Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef Reddick, W., Amaratunga, G.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67(4), 494–496 (1995)CrossRef
10.
go back to reference Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef
11.
go back to reference Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRef
12.
go back to reference Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Zh, Avouris, Ph: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Zh, Avouris, Ph: Comparing carbon nanotube transistors-the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005)CrossRef
13.
go back to reference Ilatikhameneh, H., Klimeck, G., Rahman, R.: Can homojunction tunnel FETs scale below 10 nm? IEEE Electron Device Lett. 37(1), 115–118 (2016)CrossRef Ilatikhameneh, H., Klimeck, G., Rahman, R.: Can homojunction tunnel FETs scale below 10 nm? IEEE Electron Device Lett. 37(1), 115–118 (2016)CrossRef
14.
go back to reference Shin, C.H.H., Kien, N.V.: Sub-10-nm asymmetric junctionless tunnel field-effect transistors. IEEE J. Electron Devices Soc. 2(5), 128–132 (2014)CrossRef Shin, C.H.H., Kien, N.V.: Sub-10-nm asymmetric junctionless tunnel field-effect transistors. IEEE J. Electron Devices Soc. 2(5), 128–132 (2014)CrossRef
15.
go back to reference Cui, N., Liang, R., Wang, J., Xu, J.: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering. AIP Adv. 2, 022111 (2012)CrossRef Cui, N., Liang, R., Wang, J., Xu, J.: Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering. AIP Adv. 2, 022111 (2012)CrossRef
16.
go back to reference Shih, C.H.H., Chien, N.D.: Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. J. Appl. Phys. 113, 134507 (2013)CrossRef Shih, C.H.H., Chien, N.D.: Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. J. Appl. Phys. 113, 134507 (2013)CrossRef
17.
go back to reference Shih, C.H.H., Chien, N.D.: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)CrossRef Shih, C.H.H., Chien, N.D.: Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett. 32(11), 1498–1500 (2011)CrossRef
18.
go back to reference Toh, E.H., Wang, G.H., Samudra, G., Yeo, YCh.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103, 104504 (2008)CrossRef Toh, E.H., Wang, G.H., Samudra, G., Yeo, YCh.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103, 104504 (2008)CrossRef
19.
go back to reference Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef
20.
go back to reference Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)CrossRef
21.
go back to reference Asthana, P.K., Ghosh, B., Goswami, Y., Tripathi, B.M.M.: High-speed and low-power ultra deep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61(2), 479–485 (2014)CrossRef Asthana, P.K., Ghosh, B., Goswami, Y., Tripathi, B.M.M.: High-speed and low-power ultra deep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61(2), 479–485 (2014)CrossRef
22.
go back to reference Imen Abadi, R.M., Ali, S., Ziabari, S.: Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A. 122, 616–622 (2016)CrossRef Imen Abadi, R.M., Ali, S., Ziabari, S.: Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A. 122, 616–622 (2016)CrossRef
23.
go back to reference Imen Abadi, R.M., Ali, S., Ziabari, S.: Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog applications. Microelectron. Eng. 162, 12–16 (2016)CrossRef Imen Abadi, R.M., Ali, S., Ziabari, S.: Representation of strained gate-all-around junctionless tunneling nanowire filed effect transistor for analog applications. Microelectron. Eng. 162, 12–16 (2016)CrossRef
24.
go back to reference Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. Jpn. J. Appl. Phys. 48, 064503 (2009)CrossRef Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. Jpn. J. Appl. Phys. 48, 064503 (2009)CrossRef
25.
go back to reference Nagavarapu, V., Jhaveri, R., Woo, J.C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55(4), 1013–1019 (2008)CrossRef Nagavarapu, V., Jhaveri, R., Woo, J.C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55(4), 1013–1019 (2008)CrossRef
26.
go back to reference Cho, S., Kang, I.M.: Design optimization of tunneling field-effect transistor based on silicon nanowire PNPN structure and its radio frequency characteristics. Curr. Appl. Phys. 12, 673–677 (2012)CrossRef Cho, S., Kang, I.M.: Design optimization of tunneling field-effect transistor based on silicon nanowire PNPN structure and its radio frequency characteristics. Curr. Appl. Phys. 12, 673–677 (2012)CrossRef
27.
go back to reference Cao, W., Yao, C.J., Jiao, G.F., Huang, D., Yu, H.Y., Li, M.F.: Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58(7), 2122–2126 (2011)CrossRef Cao, W., Yao, C.J., Jiao, G.F., Huang, D., Yu, H.Y., Li, M.F.: Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure. IEEE Trans. Electron Devices 58(7), 2122–2126 (2011)CrossRef
28.
go back to reference Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef
29.
go back to reference Cui, N., Liang, R., Xu, J.: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl. Phys. Lett. 98, 142105 (2011)CrossRef Cui, N., Liang, R., Xu, J.: Heteromaterial gate tunnel field effect transistor with lateral energy band profile modulation. Appl. Phys. Lett. 98, 142105 (2011)CrossRef
30.
go back to reference Bal, P., Ghosh, B., Mondal, P., Akram, M.W., Tripathi, B.M.M.: Dual material gate junctionless tunnel field effect transistor. J. Comput. Electron 13(1), 230–234 (2014)CrossRef Bal, P., Ghosh, B., Mondal, P., Akram, M.W., Tripathi, B.M.M.: Dual material gate junctionless tunnel field effect transistor. J. Comput. Electron 13(1), 230–234 (2014)CrossRef
31.
go back to reference Rama, M.S., Abdi, D.B.: Dopingless PNPN tunnel FET with improved performance: design and analysis. Superlattices Microstruct. 82, 430–437 (2015)CrossRef Rama, M.S., Abdi, D.B.: Dopingless PNPN tunnel FET with improved performance: design and analysis. Superlattices Microstruct. 82, 430–437 (2015)CrossRef
32.
go back to reference Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef
33.
go back to reference Mitra, S.K., Goswami, R., Bhowmick, B.: A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct. 92, 37–51 (2016)CrossRef Mitra, S.K., Goswami, R., Bhowmick, B.: A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct. 92, 37–51 (2016)CrossRef
34.
go back to reference Abdi, D.B., Kumar, M.J.: In-built N\(^{+}\) pocket p–n–p–n tunnel field-effect transistor. IEEE Electron Device Lett. 35(12), 1170–1172 (2014)CrossRef Abdi, D.B., Kumar, M.J.: In-built N\(^{+}\) pocket p–n–p–n tunnel field-effect transistor. IEEE Electron Device Lett. 35(12), 1170–1172 (2014)CrossRef
35.
go back to reference Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007) Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)
36.
go back to reference Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field effect transistor with increased on current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 122104 (2010)CrossRef Anghel, C., Chilagani, P., Amara, A., Vladimirescu, A.: Tunnel field effect transistor with increased on current, low-k spacer and high-k dielectric. Appl. Phys. Lett. 96, 122104 (2010)CrossRef
37.
go back to reference Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett. 36(10), 1097–1100 (2015)CrossRef
38.
go back to reference Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2(6), 187–190 (2014)CrossRef Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J. Electron Devices Soc. 2(6), 187–190 (2014)CrossRef
39.
go back to reference Sahay, S., Kumar, M.J.: Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62(11), 3882–3886 (2015)CrossRef Sahay, S., Kumar, M.J.: Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Devices 62(11), 3882–3886 (2015)CrossRef
40.
go back to reference Leonelli, D., Vandooren, A., Rooyackers, R., Gendt, S.D., Heyns, M.M., Groeseneken, G.: Drive current enhancement in p-tunnel FETs by optimization of the process conditions. Solid State Electron. 66, 28–32 (2011)CrossRef Leonelli, D., Vandooren, A., Rooyackers, R., Gendt, S.D., Heyns, M.M., Groeseneken, G.: Drive current enhancement in p-tunnel FETs by optimization of the process conditions. Solid State Electron. 66, 28–32 (2011)CrossRef
41.
go back to reference Chang, H.Y., Chopra, S., Adams, B., Li, J., Sharma, S., Kim, Y., Moffatt, S., Woo, J.C.S.: Improved subthreshold characteristics in tunnel field-effect transistors using shallow junction technologies. Solid State Electron. 80, 59–62 (2013)CrossRef Chang, H.Y., Chopra, S., Adams, B., Li, J., Sharma, S., Kim, Y., Moffatt, S., Woo, J.C.S.: Improved subthreshold characteristics in tunnel field-effect transistors using shallow junction technologies. Solid State Electron. 80, 59–62 (2013)CrossRef
42.
go back to reference Damrongplasit, N., Shin, C.H., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef Damrongplasit, N., Shin, C.H., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)CrossRef
43.
go back to reference Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)CrossRef
44.
go back to reference Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
45.
go back to reference Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef
46.
go back to reference Bal, P., Akram, M.W., Mondal, P., Ghosh, B.: Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J. Comput. Electron. 12(4), 782–789 (2013)CrossRef Bal, P., Akram, M.W., Mondal, P., Ghosh, B.: Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J. Comput. Electron. 12(4), 782–789 (2013)CrossRef
47.
go back to reference Gundapaneni, S., Goswami, A., Badami, O., Cuduvally, R., Konar, A., Bajaj, M., Murali, K.V.R.M.: Tunneling-triggered bipolar action in junctionless tunnel field-effect transistor. Appl. Phys. Express 7, 124302 (2014)CrossRef Gundapaneni, S., Goswami, A., Badami, O., Cuduvally, R., Konar, A., Bajaj, M., Murali, K.V.R.M.: Tunneling-triggered bipolar action in junctionless tunnel field-effect transistor. Appl. Phys. Express 7, 124302 (2014)CrossRef
48.
go back to reference Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)CrossRef
49.
go back to reference Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)CrossRef Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)CrossRef
50.
go back to reference Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett. 14(12), 569–571 (1993)CrossRef Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett. 14(12), 569–571 (1993)CrossRef
51.
go back to reference Verreck, D., Verhulst, A.S., Kao, K.H., Vandenberghe, W.G., Meyer, K.D., Groeseneken, G.: Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors. IEEE Trans. Electron Devices 60(7), 2128–2134 (2013)CrossRef Verreck, D., Verhulst, A.S., Kao, K.H., Vandenberghe, W.G., Meyer, K.D., Groeseneken, G.: Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors. IEEE Trans. Electron Devices 60(7), 2128–2134 (2013)CrossRef
52.
go back to reference ATLAS device simulation software. Silvaco, Santa Clara (2015) ATLAS device simulation software. Silvaco, Santa Clara (2015)
55.
go back to reference Schenk, A.: A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35, 1585–1596 (1992)CrossRef Schenk, A.: A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35, 1585–1596 (1992)CrossRef
Metadata
Title
Asymmetric junctionless nanowire TFET with built-in source pocket emphasizing on energy band modification
Authors
Morteza Rahimian
Morteza Fathipour
Publication date
16-09-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0895-1

Other articles of this Issue 4/2016

Journal of Computational Electronics 4/2016 Go to the issue