Skip to main content
Top

2024 | OriginalPaper | Chapter

Asymptotic Utility of Spectral Anonymization

Authors : Katariina Perkonoja, Joni Virta

Published in: Privacy in Statistical Databases

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the contemporary data landscape characterized by multi-source data collection and third-party sharing, ensuring individual privacy stands as a critical concern. While various anonymization methods exist, their utility preservation and privacy guarantees remain challenging to quantify. In this work, we address this gap by studying the utility and privacy of the spectral anonymization (SA) algorithm, particularly in an asymptotic framework. Unlike conventional anonymization methods that directly modify the original data, SA operates by perturbing the data in a spectral basis and subsequently reverting them to their original basis. Alongside the original version \(\mathcal {P}\)-SA, employing random permutation transformation, we introduce two novel SA variants: \(\mathcal {J}\)-spectral anonymization and \(\mathcal {O}\)-spectral anonymization, which employ sign-change and orthogonal matrix transformations, respectively. We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data. Our results reveal, in particular, that the asymptotic efficiency of all three SA algorithms in covariance estimation is exactly 50% when compared to the original data. To assess the applicability of these asymptotic results in practice, we conduct a simulation study with finite data and also evaluate the privacy protection offered by these algorithms using distance-based record linkage. Our research reveals that while no method exhibits clear superiority in finite-sample utility, \(\mathcal {O}\)-SA distinguishes itself for its exceptional privacy preservation, never producing identical records, albeit with increased computational complexity. Conversely, \(\mathcal {P}\)-SA emerges as a computationally efficient alternative, demonstrating unmatched efficiency in mean estimation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Awan, J., Kenney, A., Reimherr, M., Slavković, A.: Benefits and pitfalls of the exponential mechanism with applications to Hilbert spaces and functional PCA. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 374—384. PMLR (2019) Awan, J., Kenney, A., Reimherr, M., Slavković, A.: Benefits and pitfalls of the exponential mechanism with applications to Hilbert spaces and functional PCA. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 374—384. PMLR (2019)
2.
go back to reference Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. Springer, New York (2007) Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. Springer, New York (2007)
3.
go back to reference Calviño, A., Aldeguer, P., Domingo-Ferrer, J.: Factor analysis for anonymization. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 984–991 (2017) Calviño, A., Aldeguer, P., Domingo-Ferrer, J.: Factor analysis for anonymization. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 984–991 (2017)
4.
go back to reference Domingo-Ferrer, J., Torra, V.: Disclosure risk assessment in statistical data protection. J. Comput. Appl. Math. 164–165, 285–293 (2004)MathSciNetCrossRef Domingo-Ferrer, J., Torra, V.: Disclosure risk assessment in statistical data protection. J. Comput. Appl. Math. 164–165, 285–293 (2004)MathSciNetCrossRef
7.
go back to reference Kollo, T., von Rosen, D.: Advanced Multivariate Statistics with Matrices. Springer, Dordrecht (2005)CrossRef Kollo, T., von Rosen, D.: Advanced Multivariate Statistics with Matrices. Springer, Dordrecht (2005)CrossRef
8.
go back to reference Kundu, S., Suthaharan, S.: Privacy-preserving predictive model using factor analysis for neuroscience applications. In: IEEE International Conference on Big Data Security on Cloud (BigDataSecurity), High Performance and Smart Computing (HPSC) and Intelligent Data and Security (IDS), pp. 67–73. IEEE (2019) Kundu, S., Suthaharan, S.: Privacy-preserving predictive model using factor analysis for neuroscience applications. In: IEEE International Conference on Big Data Security on Cloud (BigDataSecurity), High Performance and Smart Computing (HPSC) and Intelligent Data and Security (IDS), pp. 67–73. IEEE (2019)
9.
go back to reference Lasko, T.A., Vinterbo, S.A.: Spectral anonymization of data. IEEE Trans. Knowl. Data Eng. 22(3), 437–446 (2009)CrossRef Lasko, T.A., Vinterbo, S.A.: Spectral anonymization of data. IEEE Trans. Knowl. Data Eng. 22(3), 437–446 (2009)CrossRef
10.
go back to reference Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity. ACM Trans. Knowl. Discov. Data 1, 3-es (2007) Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity. ACM Trans. Knowl. Discov. Data 1, 3-es (2007)
11.
go back to reference Muralidhar, K., Sarathy, R.: Data shuffling-a new masking approach for numerical data. Manag. Sci. 52(5), 658–670 (2006)CrossRef Muralidhar, K., Sarathy, R.: Data shuffling-a new masking approach for numerical data. Manag. Sci. 52(5), 658–670 (2006)CrossRef
12.
go back to reference Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the 23rd International Conference on Data Engineering, pp. 106–115 (2007) Ninghui, L., Tiancheng, L., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the 23rd International Conference on Data Engineering, pp. 106–115 (2007)
14.
go back to reference Seeman, J., Reimherr, M., Slavković, A.: Exact privacy guarantees for Markov chain implementations of the exponential mechanism with artificial atoms. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13125–13136. Curran Associates, Inc. (2021) Seeman, J., Reimherr, M., Slavković, A.: Exact privacy guarantees for Markov chain implementations of the exponential mechanism with artificial atoms. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13125–13136. Curran Associates, Inc. (2021)
15.
go back to reference Shlomo, N., De Waal, T.: Protection of micro-data subject to edit constraints against statistical disclosure. J. Off. Stat. 24(2), 229–253 (2008) Shlomo, N., De Waal, T.: Protection of micro-data subject to edit constraints against statistical disclosure. J. Off. Stat. 24(2), 229–253 (2008)
16.
go back to reference Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17(3), 403–409 (1980)MathSciNetCrossRef Stewart, G.W.: The efficient generation of random orthogonal matrices with an application to condition estimators. SIAM J. Numer. Anal. 17(3), 403–409 (1980)MathSciNetCrossRef
17.
go back to reference Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 557–570 (2002)MathSciNetCrossRef Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 557–570 (2002)MathSciNetCrossRef
19.
20.
go back to reference Xiao, H., Ye, Y., Devadas, S.: Local differential privacy in decentralized optimization. arXiv preprint (2019) Xiao, H., Ye, Y., Devadas, S.: Local differential privacy in decentralized optimization. arXiv preprint (2019)
Metadata
Title
Asymptotic Utility of Spectral Anonymization
Authors
Katariina Perkonoja
Joni Virta
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69651-0_4

Premium Partner