Skip to main content
Top

2017 | OriginalPaper | Chapter

Atomic Force Microscopy for Characterizing Nanocomposites

Authors : Yu Liu, Chao Bao, Heng-yong Nie, David Hui, Jun Mei, Woon-ming Lau

Published in: Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1959, the Nobel Laureate Professor Richard Feynman delivered the signal of “there is plenty of room at the bottom” at his lecture in Caltech (Feynman RP, There’s plenty of room at the bottom: an invitation to enter a new field of physics. First published in engineering and science magazine XXIII(5), 1960). He described the people’s perspectives to establish the capability for manipulating individual atoms and/or molecules. When stepping into this century, our society has been in high demand of miniature devices (Westervelt RM, Science 320:324–325, 2008; Madou MJ, Fundamentals of microfabrication and nanotechnology, Volume III: from MEMS to Bio-MEMS and Bio-NEMS: manufacturing techniques and applications. CRC Press, Boca Raton, 2011). With the scale down on critical dimensions of the devices, there will be a great deal of the beauty happening in mechanical, electrical, chemical, thermal, and optical domains (Cumings J, Zettl A, Science 289:602–604, 2000; Klinke C, Hannon JB, Afzali A, Avouris P, Nano Lett 6:906–910 2006; Lucas M, Zhang XH, Palaci I, Klinke C, Tosatti E, Riedo E, Nat Mater 8:876–881, 2009). As one most profound application within nanotechnology, nanocomposite has been indispensable in many segments of our society, spanning from packaging, automotive, medicine, energy harvesting and storage, and avionics (Youssef AM, Plast Technol Eng 52:635–660 2013; Maiti M, Bhattacharya M, Bhowmick AK, Rubber Chem Technol 81:384–469, 2008; Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci LJ, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM, PNAS 104:13574–13577, 2007) to name a few. In surveying design and characterization of nanocomposites, atomic force microscopy (AFM) as invented in 1986 by Binnig, Gerber, and Quate (Binnig G, Quate CF, Gerber C, Phys Rev Lett 56:930–933, 1986) is extremely important and has been quickly developed as a multifunctional tool to probe rich information on the surfaces related to mechanical, electrical, magnetic, chemical, and capacitive properties (Muller DJ, Dufrene YF, Nat Nanotechnol 3:261–269, 2008; Brennan B, Spencer SJ, Belsey NA, Faris T, Croninb H, Silva SRP, Sainsbury T, Gilmorea IS, Stoevab Z, Pollard AJ, Appl Surf Sci 403:403–412, 2017; Huang H, Dobryden I, Ihrner N, Johansson M, Ma HY, Pan JS, Claesson PM, J Colloid Interf Sci 494:204–214, 2017). This chapter is organized for providing a review on AFM imaging techniques being useful for studying nanocomposites and their relevance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.P. Feynman, There’s plenty of room at the bottom: an invitation to enter a new field of physics. First Published in Engineering and Science Magazine, vol. XXIII, no. 5, (1960) R.P. Feynman, There’s plenty of room at the bottom: an invitation to enter a new field of physics. First Published in Engineering and Science Magazine, vol. XXIII, no. 5, (1960)
2.
go back to reference R.M. Westervelt, Applied physics: graphene nanoelectronics. Science 320, 324–325 (2008)CrossRef R.M. Westervelt, Applied physics: graphene nanoelectronics. Science 320, 324–325 (2008)CrossRef
3.
go back to reference M.J. Madou, Fundamentals of Microfabrication and Nanotechnology, Volume III: From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications (CRC Press, Boca Raton, 2011) M.J. Madou, Fundamentals of Microfabrication and Nanotechnology, Volume III: From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications (CRC Press, Boca Raton, 2011)
4.
go back to reference J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)CrossRef J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)CrossRef
5.
go back to reference C. Klinke, J.B. Hannon, A. Afzali, P. Avouris, Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906–910 (2006)CrossRef C. Klinke, J.B. Hannon, A. Afzali, P. Avouris, Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett. 6, 906–910 (2006)CrossRef
6.
go back to reference M. Lucas, X.H. Zhang, I. Palaci, C. Klinke, E. Tosatti, E. Riedo, Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 8, 876–881 (2009)CrossRef M. Lucas, X.H. Zhang, I. Palaci, C. Klinke, E. Tosatti, E. Riedo, Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 8, 876–881 (2009)CrossRef
7.
go back to reference A.M. Youssef, Polymer nanocomposites as a new trend for packaging applications. J. Polym. – Plast. Technol. Eng. 52, 635–660 (2013)CrossRef A.M. Youssef, Polymer nanocomposites as a new trend for packaging applications. J. Polym. – Plast. Technol. Eng. 52, 635–660 (2013)CrossRef
8.
go back to reference M. Maiti, M. Bhattacharya, A.K. Bhowmick, Elastomeric nanocomposite. Rubber Chem. Technol. 81, 384–469 (2008)CrossRef M. Maiti, M. Bhattacharya, A.K. Bhowmick, Elastomeric nanocomposite. Rubber Chem. Technol. 81, 384–469 (2008)CrossRef
9.
go back to reference V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L.J. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. PNAS 104, 13574–13577 (2007)CrossRef V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L.J. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. PNAS 104, 13574–13577 (2007)CrossRef
10.
go back to reference G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRef G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRef
11.
go back to reference D.J. Muller, Y.F. Dufrene, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008)CrossRef D.J. Muller, Y.F. Dufrene, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008)CrossRef
12.
go back to reference B. Brennan, S.J. Spencer, N.A. Belsey, T. Faris, H. Croninb, S.R.P. Silva, T. Sainsbury, I.S. Gilmorea, Z. Stoevab, A.J. Pollard, Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Appl. Surf. Sci. 403, 403–412 (2017)CrossRef B. Brennan, S.J. Spencer, N.A. Belsey, T. Faris, H. Croninb, S.R.P. Silva, T. Sainsbury, I.S. Gilmorea, Z. Stoevab, A.J. Pollard, Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Appl. Surf. Sci. 403, 403–412 (2017)CrossRef
13.
go back to reference H. Huang, I. Dobryden, N. Ihrner, M. Johansson, H.Y. Ma, J.S. Pan, P.M. Claesson, Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite. J. Colloid Interf. Sci. 494, 204–214 (2017)CrossRef H. Huang, I. Dobryden, N. Ihrner, M. Johansson, H.Y. Ma, J.S. Pan, P.M. Claesson, Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite. J. Colloid Interf. Sci. 494, 204–214 (2017)CrossRef
14.
go back to reference S. Devasia, E. Eleftheriou, S.O.R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15, 802–823 (2007)CrossRef S. Devasia, E. Eleftheriou, S.O.R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15, 802–823 (2007)CrossRef
15.
go back to reference C.M. Su, Industrial perspectives of AFM control. Asian J. Control 11, 104–109 (2009)CrossRef C.M. Su, Industrial perspectives of AFM control. Asian J. Control 11, 104–109 (2009)CrossRef
16.
go back to reference D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, B.D. Terris, Force microscope using a fiberoptic displacement sensor. Rev. Sci. Instrum. 59, 2337–2340 (1988)CrossRef D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stern, B.D. Terris, Force microscope using a fiberoptic displacement sensor. Rev. Sci. Instrum. 59, 2337–2340 (1988)CrossRef
17.
go back to reference S.C. Masmanidis, R.B. Karabalin, I. De Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes, Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007)CrossRef S.C. Masmanidis, R.B. Karabalin, I. De Vlaminck, G. Borghs, M.R. Freeman, M.L. Roukes, Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007)CrossRef
18.
go back to reference L.P. Van, V. Kyrylyuk, F. Thoyer, J. Cousty, A stabler non contact atomic force microscopy imaging using a tuning fork for air and liquid environments: the zero phase mode atomic force microscopy. J. Appl. Phys. 104, 074303 (2008)CrossRef L.P. Van, V. Kyrylyuk, F. Thoyer, J. Cousty, A stabler non contact atomic force microscopy imaging using a tuning fork for air and liquid environments: the zero phase mode atomic force microscopy. J. Appl. Phys. 104, 074303 (2008)CrossRef
19.
go back to reference S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, An atomic-resolution atomic-force microscope implemented using an optical-lever. J. Appl. Phys. 65, 164–167 (1989)CrossRef S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, An atomic-resolution atomic-force microscope implemented using an optical-lever. J. Appl. Phys. 65, 164–167 (1989)CrossRef
20.
go back to reference G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988)CrossRef G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988)CrossRef
21.
go back to reference R. Zhu, S. Howorka, J. Proll, F. Kienberger, J. Priener, J. Hesse, A. Ebner, V.P. Pastushenko, H.J. Gruber, P. Hinterdorfer, Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat. Nanotechnol. 5, 788–791 (2010)CrossRef R. Zhu, S. Howorka, J. Proll, F. Kienberger, J. Priener, J. Hesse, A. Ebner, V.P. Pastushenko, H.J. Gruber, P. Hinterdorfer, Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns. Nat. Nanotechnol. 5, 788–791 (2010)CrossRef
22.
go back to reference K.B. Gavan, E.W.J.M. van der Drift, W.J. Vensta, M.R. Zuiddam, H.S.J. van der Zant, Effect of undercut on the resonant behavior of silicon nitride cantilevers. J. Micromech. Microeng. 19(2009), 035003. K.B. Gavan, E.W.J.M. van der Drift, W.J. Vensta, M.R. Zuiddam, H.S.J. van der Zant, Effect of undercut on the resonant behavior of silicon nitride cantilevers. J. Micromech. Microeng. 19(2009), 035003.
23.
go back to reference R.W. Stark, W.M. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111–5114 (2003)CrossRef R.W. Stark, W.M. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111–5114 (2003)CrossRef
24.
go back to reference C.M. Mate, G.M. Mcclelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef C.M. Mate, G.M. Mcclelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)CrossRef
25.
go back to reference I. Szlufarska, M. Chandross, R.W. Carpick, Recent advances in single-asperity nanotribology. J. Physics D-Appl. Physics. 41(2008): p. - I. Szlufarska, M. Chandross, R.W. Carpick, Recent advances in single-asperity nanotribology. J. Physics D-Appl. Physics. 41(2008): p. -
26.
go back to reference S.H. Kim, D.B. Asay, M.T. Dugger, Nanotribology and MEMS. NanoToday 2, 23–29 (2007) S.H. Kim, D.B. Asay, M.T. Dugger, Nanotribology and MEMS. NanoToday 2, 23–29 (2007)
27.
go back to reference Y. Terada, M. Harada, T. Ikehara, T. Nishi, Nanotribology of polymer blends. J. Appl. Phys. 87, 2803–2807 (2000)CrossRef Y. Terada, M. Harada, T. Ikehara, T. Nishi, Nanotribology of polymer blends. J. Appl. Phys. 87, 2803–2807 (2000)CrossRef
28.
go back to reference E. Liu, B. Blanpain, J.P. Celis, Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996)CrossRef E. Liu, B. Blanpain, J.P. Celis, Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996)CrossRef
29.
go back to reference R.J. Cannara, M. Eglin, R.W. Carpick, Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77, 053701 (2006)CrossRef R.J. Cannara, M. Eglin, R.W. Carpick, Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77, 053701 (2006)CrossRef
30.
go back to reference G. Bogdanovic, A. Meurk, M.W. Rutland, Tip friction – torsional spring constant determination. Colloids Surf B-Biointerfaces 19, 397–405 (2000)CrossRef G. Bogdanovic, A. Meurk, M.W. Rutland, Tip friction – torsional spring constant determination. Colloids Surf B-Biointerfaces 19, 397–405 (2000)CrossRef
31.
go back to reference H. Xie, J. Vitard, S. Haliyo, S. Regnier, Optical lever calibration in atomic force microscope with a mechanical lever. Rev. Sci. Instrum. 79, 096101 (2008)CrossRef H. Xie, J. Vitard, S. Haliyo, S. Regnier, Optical lever calibration in atomic force microscope with a mechanical lever. Rev. Sci. Instrum. 79, 096101 (2008)CrossRef
32.
go back to reference S. Akari, D. Horn, H. Keller, Chemical imaging by scanning force microscopy. Adv. Mater. 7, 549–551 (1995)CrossRef S. Akari, D. Horn, H. Keller, Chemical imaging by scanning force microscopy. Adv. Mater. 7, 549–551 (1995)CrossRef
33.
go back to reference S. Ibrahim, T. Ito, Surface chemical properties of nanoscale domains on uv-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy. Langmuir 26, 2119–2123 (2010)CrossRef S. Ibrahim, T. Ito, Surface chemical properties of nanoscale domains on uv-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy. Langmuir 26, 2119–2123 (2010)CrossRef
34.
go back to reference D. Devaprakasam, P.V. Hatton, G. Mobus, B.J. Inkson, Nanoscale tribology, energy dissipation and failure mechanisms of nano- and micro-Silica particle-filled polymer composites. Tribol. Lett. 34, 11–19 (2009)CrossRef D. Devaprakasam, P.V. Hatton, G. Mobus, B.J. Inkson, Nanoscale tribology, energy dissipation and failure mechanisms of nano- and micro-Silica particle-filled polymer composites. Tribol. Lett. 34, 11–19 (2009)CrossRef
35.
go back to reference W. Zhang, S. Ge, Y. Wang, M.H. Rafailovich, O. Dhez, D.A. WInesett, H. Ade, K.V.P.M. Shafi, A. Ulman, R. Popovitz-Biro, R. Tenne, J. Sokolov, Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 44, 2109–2115 (2003)CrossRef W. Zhang, S. Ge, Y. Wang, M.H. Rafailovich, O. Dhez, D.A. WInesett, H. Ade, K.V.P.M. Shafi, A. Ulman, R. Popovitz-Biro, R. Tenne, J. Sokolov, Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 44, 2109–2115 (2003)CrossRef
36.
go back to reference A. Mekroud, D. Benachour, S. Bensaad, Influence of organoclay filler on the properties of polystyrene/low-density polyethylene blend. J. Compos. Interfaces 22, 809–822 (2015)CrossRef A. Mekroud, D. Benachour, S. Bensaad, Influence of organoclay filler on the properties of polystyrene/low-density polyethylene blend. J. Compos. Interfaces 22, 809–822 (2015)CrossRef
37.
go back to reference P. Maivald, H.T. Butt, G.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities. Nanotechnology 2, 103–106 (1991)CrossRef P. Maivald, H.T. Butt, G.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities. Nanotechnology 2, 103–106 (1991)CrossRef
38.
go back to reference D. Ebert, B. Bhushan, Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir 28, 11391–11399 (2012)CrossRef D. Ebert, B. Bhushan, Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles. Langmuir 28, 11391–11399 (2012)CrossRef
39.
go back to reference R.M. Overney, E. Meyer, J. Frommer, H.J. Guentherodt, M. Fujihira, H. Takano, Y. Gotoh, Force microscopy study of friction and elastic compliance of phase separated organic thin films. Langmuir 10, 1281–1286 (1994)CrossRef R.M. Overney, E. Meyer, J. Frommer, H.J. Guentherodt, M. Fujihira, H. Takano, Y. Gotoh, Force microscopy study of friction and elastic compliance of phase separated organic thin films. Langmuir 10, 1281–1286 (1994)CrossRef
40.
go back to reference Force modulation imaging with atomic force microscopy. Veeco Instruments Inc. Force modulation imaging with atomic force microscopy. Veeco Instruments Inc.
41.
go back to reference D. DeVecchio, B. Bhushan, Localized surface elasticity measurements using an atomic force microscope. Rev. Sci. Instrum. 68, 4498–4505 (1997)CrossRef D. DeVecchio, B. Bhushan, Localized surface elasticity measurements using an atomic force microscope. Rev. Sci. Instrum. 68, 4498–4505 (1997)CrossRef
42.
go back to reference B. Cappela, G. Dietler, Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)CrossRef B. Cappela, G. Dietler, Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)CrossRef
43.
go back to reference J.H. Hoh, J.P. Cleveland, C.B. Prater, J.P. Revel, P.K. Hansma, Quantized adhesion detected with the atomic force microscope. J. Am. Chem. Soc. 114(1992), 4917–4918 J.H. Hoh, J.P. Cleveland, C.B. Prater, J.P. Revel, P.K. Hansma, Quantized adhesion detected with the atomic force microscope. J. Am. Chem. Soc. 114(1992), 4917–4918
44.
go back to reference D. Trifonova-Van Haeringen, H. Schonherr, G.J. Vancso, L. Van Der Does, W.M. Noordermeer, P.J.P. Janssen, Atomic force microscopy of elastomers: morphology, distribution of filler particles and adhesion using chemically modified tips. Rubber Chem. Technol. 72, 862–875 (1999)CrossRef D. Trifonova-Van Haeringen, H. Schonherr, G.J. Vancso, L. Van Der Does, W.M. Noordermeer, P.J.P. Janssen, Atomic force microscopy of elastomers: morphology, distribution of filler particles and adhesion using chemically modified tips. Rubber Chem. Technol. 72, 862–875 (1999)CrossRef
45.
go back to reference H. Hertz, Über die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. 92, 156–171 (1882) H. Hertz, Über die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. 92, 156–171 (1882)
46.
go back to reference L.Y. Lin, D.E. Kim, Measurement of the elastic modulus of polymeric films using an AFM with a steel micro-spherical probe tip. Polym. Test. 31, 926–930 (2012)CrossRef L.Y. Lin, D.E. Kim, Measurement of the elastic modulus of polymeric films using an AFM with a steel micro-spherical probe tip. Polym. Test. 31, 926–930 (2012)CrossRef
47.
go back to reference J. Domke, M. Radmacher, Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320–3325 (1998)CrossRef J. Domke, M. Radmacher, Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320–3325 (1998)CrossRef
48.
go back to reference A. Pakzad, J. Simonsen, P.A. Heiden, R.S. Yassar, Size effects on the nanomechanical properties of cellulose I nanocrystals. J. Mater. Res. 27, 528–536 (2012)CrossRef A. Pakzad, J. Simonsen, P.A. Heiden, R.S. Yassar, Size effects on the nanomechanical properties of cellulose I nanocrystals. J. Mater. Res. 27, 528–536 (2012)CrossRef
49.
go back to reference I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, E. Riedo, Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005)CrossRef I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen, E. Riedo, Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005)CrossRef
50.
go back to reference J. Notbohm, B. Poon, G. Ravichandran, Analysis of nanoindentation of soft materials with an atomic force microscope. J. Mater. Res. 27, 229–237 (2012)CrossRef J. Notbohm, B. Poon, G. Ravichandran, Analysis of nanoindentation of soft materials with an atomic force microscope. J. Mater. Res. 27, 229–237 (2012)CrossRef
51.
go back to reference A.-Y. Jee, M. Lee, Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 29, 95–99 (2010)CrossRef A.-Y. Jee, M. Lee, Comparative analysis on the nanoindentation of polymers using atomic force microscopy. Polym. Test. 29, 95–99 (2010)CrossRef
52.
go back to reference B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRef B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)CrossRef
53.
go back to reference W.F. Heinz, E. A-Hassen, J.H. Hoh, Application of force volume imaging with atomic force microscopes. Veeco Instruments Inc. W.F. Heinz, E. A-Hassen, J.H. Hoh, Application of force volume imaging with atomic force microscopes. Veeco Instruments Inc.
54.
go back to reference D. Wang, S. Fujinami, K. Nakajima, S. Inukai, H. Ueki, A. Magario, T. Noguchi, M. Endo, T. Nishi, Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer 51, 2455–2459 (2010)CrossRef D. Wang, S. Fujinami, K. Nakajima, S. Inukai, H. Ueki, A. Magario, T. Noguchi, M. Endo, T. Nishi, Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer 51, 2455–2459 (2010)CrossRef
55.
go back to reference T.B. Karim, G.B. McKenna, Evidence of surface softening in polymers and their nanocomposites as determined by spontaneous particle embedment. Polymer 52, 6134–6145 (2011)CrossRef T.B. Karim, G.B. McKenna, Evidence of surface softening in polymers and their nanocomposites as determined by spontaneous particle embedment. Polymer 52, 6134–6145 (2011)CrossRef
56.
go back to reference Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf. Sci. 290, L688–L692 (1993)CrossRef Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf. Sci. 290, L688–L692 (1993)CrossRef
57.
go back to reference N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs, How does a tip tap? Nanotechnology 8, 67–75 (1997)CrossRef N.A. Burnham, O.P. Behrend, F. Oulevey, G. Gremaud, P.J. Gallo, D. Gourdon, E. Dupas, A.J. Kulik, H.M. Pollock, G.A.D. Briggs, How does a tip tap? Nanotechnology 8, 67–75 (1997)CrossRef
58.
go back to reference S.N. Magonov, V. Elings, M.H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, L385–L391 (1997)CrossRef S.N. Magonov, V. Elings, M.H. Whangbo, Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf. Sci. 375, L385–L391 (1997)CrossRef
59.
go back to reference S.J.T. Van Noort, K.O. Van der Werf, B.G. De Grooth, N.F. Van Hulst, J. Greve, Height anomalies in tapping mode atomic force microscopy in air caused by adhesion. Ultramicroscopy 69, 117–127 (1997)CrossRef S.J.T. Van Noort, K.O. Van der Werf, B.G. De Grooth, N.F. Van Hulst, J. Greve, Height anomalies in tapping mode atomic force microscopy in air caused by adhesion. Ultramicroscopy 69, 117–127 (1997)CrossRef
60.
go back to reference M. Bai, S. Trogisch, S. Magonov, H. Taub, Explanation and correction of false step heights in amplitude modulation atomic force microscopy measurements on alkane films. Ultramicroscopy 108, 946–952 (2008)CrossRef M. Bai, S. Trogisch, S. Magonov, H. Taub, Explanation and correction of false step heights in amplitude modulation atomic force microscopy measurements on alkane films. Ultramicroscopy 108, 946–952 (2008)CrossRef
61.
go back to reference J. Tamayo, R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 4430–4435 (1996)CrossRef J. Tamayo, R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 4430–4435 (1996)CrossRef
62.
go back to reference J. Tamayo, R. Garcia, Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394–2396 (1997)CrossRef J. Tamayo, R. Garcia, Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71, 2394–2396 (1997)CrossRef
63.
go back to reference J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998)CrossRef J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998)CrossRef
64.
go back to reference R. Hillenbrand, M. Stark, R. Guckenberger, Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction. Appl. Phys. Lett. 76, 3478–3480 (2000)CrossRef R. Hillenbrand, M. Stark, R. Guckenberger, Higher-harmonics generation in tapping-mode atomic-force microscopy: insights into the tip-sample interaction. Appl. Phys. Lett. 76, 3478–3480 (2000)CrossRef
65.
go back to reference R.W. Stark, T. Drobek, W.M. Heckl, Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes. Appl. Phys. Lett. 74, 3296–3298 (1999)CrossRef R.W. Stark, T. Drobek, W.M. Heckl, Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes. Appl. Phys. Lett. 74, 3296–3298 (1999)CrossRef
66.
go back to reference Y.X. Song, B. Bhushan, Simulation of dynamic modes of atomic force microscopy using a 3D finite element model. Ultramicroscopy 106, 847–873 (2006)CrossRef Y.X. Song, B. Bhushan, Simulation of dynamic modes of atomic force microscopy using a 3D finite element model. Ultramicroscopy 106, 847–873 (2006)CrossRef
67.
go back to reference S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate, Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor. Appl. Phys. Lett. 68, 1427–1429 (1996)CrossRef S.C. Minne, S.R. Manalis, A. Atalar, C.F. Quate, Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor. Appl. Phys. Lett. 68, 1427–1429 (1996)CrossRef
68.
go back to reference M. Hoummady, E. Farnault, Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever. Appl. Physics a-Mater. Sci. Process. 66, S361–S364 (1998)CrossRef M. Hoummady, E. Farnault, Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever. Appl. Physics a-Mater. Sci. Process. 66, S361–S364 (1998)CrossRef
69.
go back to reference T.R. Rodriguez, R. Garcia, Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84, 449–451 (2004)CrossRef T.R. Rodriguez, R. Garcia, Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84, 449–451 (2004)CrossRef
70.
go back to reference J.R. Lozano, R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy. Phys. Rev. B 79, 014110 (2009)CrossRef J.R. Lozano, R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy. Phys. Rev. B 79, 014110 (2009)CrossRef
71.
go back to reference L. Tetard, A. Passian, T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat. Nanotechnol. 5, 105–109 (2010)CrossRef L. Tetard, A. Passian, T. Thundat, New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat. Nanotechnol. 5, 105–109 (2010)CrossRef
72.
go back to reference S.Q. Hu, C.M. Su, W. Arnold, Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies. J. Appl. Phys. 109, 084324 (2011)CrossRef S.Q. Hu, C.M. Su, W. Arnold, Imaging of subsurface structures using atomic force acoustic microscopy at GHz frequencies. J. Appl. Phys. 109, 084324 (2011)CrossRef
73.
go back to reference O. Sahin, G. Yaralioglu, R. Grow, S.F. Zappe, A. Atalar, C. Quate, O. Solgaard, High-resolution imaging of elastic properties using harmonic cantilevers. Sensors Actuators a-Phys. 114, 183–190 (2004)CrossRef O. Sahin, G. Yaralioglu, R. Grow, S.F. Zappe, A. Atalar, C. Quate, O. Solgaard, High-resolution imaging of elastic properties using harmonic cantilevers. Sensors Actuators a-Phys. 114, 183–190 (2004)CrossRef
74.
go back to reference O. Sahin, Accessing time – varying forces on the vibrating tip of the dynamic atomic force microscope to map material composition. Israel J. Chem. 48, 55–63 (2008)CrossRef O. Sahin, Accessing time – varying forces on the vibrating tip of the dynamic atomic force microscope to map material composition. Israel J. Chem. 48, 55–63 (2008)CrossRef
75.
go back to reference S.D. Solares, H. Holscher, Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever. Nanotechnology 21, 075702 (2010)CrossRef S.D. Solares, H. Holscher, Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever. Nanotechnology 21, 075702 (2010)CrossRef
Metadata
Title
Atomic Force Microscopy for Characterizing Nanocomposites
Authors
Yu Liu
Chao Bao
Heng-yong Nie
David Hui
Jun Mei
Woon-ming Lau
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-61651-3_17

Premium Partners