Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 4/2022

29-11-2021

Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression

Authors: Man Wang, Yanqiu Zhang, Shuyong Jiang

Published in: Journal of Materials Engineering and Performance | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Molecular dynamics simulations were performed to study the evolution of void along different crystallographic orientations of single-crystal copper under shock compression, including \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\), \([111]\) and \([100]\) orientations. For both \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\) and \([111]\) directions, the void only shrinks and does not collapse, whereas for \([100]\) direction, the void can gradually shrink until it collapses completely. Dislocations react with each other to form sessile dislocations during the continuous loading of the shock waves, in both \([1\overline{{{\kern 1pt} 1{\kern 1pt} }} 0]\) and [111] directions, and almost all the dislocations are found to be \(\frac{a}{6} < 110 >\) stair-rod partial dislocations which are of sessile type. However, for the [100] orientation, sessile dislocations are mainly \(\frac{a}{3} < 001 >\) Hirth partial dislocations. For \([100]\) direction, the sessile dislocation density is the lowest among the three orientations. Therefore, shock compression along \([100]\) direction is more conducive to plastic deformation of the void. Dislocation slip is responsible for deformation mechanism of the void, where \(\frac{a}{6} < 112 >\) Shockley partial dislocations are firstly generated on the surface of the void, and then they continue to move and multiply, which shall lay the foundation for the formation of stacking faults. Stacking faults sweep through the crystal plane and consequently the void shrinks. This work gives an atomic-scale observation perspective of the evolution of micro-void defects in single-crystal copper under shock compression and provides a clearer explanation for the understanding of the dislocation evolution mechanism behind the deformation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C.F. Tipper, The Fracture of Metals, Metallurgia, 1949, 39, p 133–137. C.F. Tipper, The Fracture of Metals, Metallurgia, 1949, 39, p 133–137.
2.
go back to reference H.C. Rogers, The Tensile Fracture of Ductile Metals, Trans. Met. Soc. AIME, 1960, 218, p 498–506. H.C. Rogers, The Tensile Fracture of Ductile Metals, Trans. Met. Soc. AIME, 1960, 218, p 498–506.
3.
go back to reference T.W. Barbee Jr., L. Seaman, R.C. Crewdson and D.R. Curran, Dynamic Fracture Criteria for Ductile and Brittle Metals, J. Mater., 1972, 7, p 393–401. T.W. Barbee Jr., L. Seaman, R.C. Crewdson and D.R. Curran, Dynamic Fracture Criteria for Ductile and Brittle Metals, J. Mater., 1972, 7, p 393–401.
4.
go back to reference L. Seaman, D.R. Curran and D.A. Shockey, Computational Models for Ductile and Brittle Fracture, J. Appl. Phys., 1976, 47(11), p 4814–4826.CrossRef L. Seaman, D.R. Curran and D.A. Shockey, Computational Models for Ductile and Brittle Fracture, J. Appl. Phys., 1976, 47(11), p 4814–4826.CrossRef
5.
go back to reference D.R. Curran, L. Seaman and D.A. Shockey, Dynamic Failure in Solids, Phys. Today, 1977, 30(1), p 46–55.CrossRef D.R. Curran, L. Seaman and D.A. Shockey, Dynamic Failure in Solids, Phys. Today, 1977, 30(1), p 46–55.CrossRef
6.
go back to reference C. Hong, S. Fæster, N. Hansen, X. Huang and R.I. Barabash, Non-Spherical Voids and Lattice Reorientation Patterning in a Shock-Loaded Al Single Crystal, Acta Mater., 2017, 134, p 16–30.CrossRef C. Hong, S. Fæster, N. Hansen, X. Huang and R.I. Barabash, Non-Spherical Voids and Lattice Reorientation Patterning in a Shock-Loaded Al Single Crystal, Acta Mater., 2017, 134, p 16–30.CrossRef
7.
go back to reference Ma. Dongfang, Wu. Chen Danian, W.H. Shanxing, C. Canyuan and D. Gaotao, Dynamic Experimental Verification of Void Coalescence Criteria, Mater. Sci. Eng. A., 2012, 533, p 96–106.CrossRef Ma. Dongfang, Wu. Chen Danian, W.H. Shanxing, C. Canyuan and D. Gaotao, Dynamic Experimental Verification of Void Coalescence Criteria, Mater. Sci. Eng. A., 2012, 533, p 96–106.CrossRef
8.
go back to reference B.C. Hornbuckle, S.W. Dean, X. Zhou, A.K. Giri, C.L. Williams, K.N. Solanki, G.B. Thompson and K.A. Darling, Laser Shocking of Nanocrystalline Materials: Revealing the Extreme Pressure Effects on the Microstructural Stability and Deformation Response, Appl. Phys. Lett., 2020, 116, p 231901.CrossRef B.C. Hornbuckle, S.W. Dean, X. Zhou, A.K. Giri, C.L. Williams, K.N. Solanki, G.B. Thompson and K.A. Darling, Laser Shocking of Nanocrystalline Materials: Revealing the Extreme Pressure Effects on the Microstructural Stability and Deformation Response, Appl. Phys. Lett., 2020, 116, p 231901.CrossRef
9.
go back to reference V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2024, 52, p 1397–1408.CrossRef V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2024, 52, p 1397–1408.CrossRef
10.
go back to reference M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani and M.A. Meyers, Laser Shock Compression of Copper and Copper–Aluminum Alloys, Int. J. Impact Eng., 2005, 32, p 473–507.CrossRef M.S. Schneider, B. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani and M.A. Meyers, Laser Shock Compression of Copper and Copper–Aluminum Alloys, Int. J. Impact Eng., 2005, 32, p 473–507.CrossRef
11.
go back to reference J.C. Crowhurst, M.R. Armstrong, S.D. Gates, J.M. Zaug, H.B. Radousky and N.E. Teslich, Yielding of Tantalum at Strain Rates up to 109 s-1, Appl. Phys. Lett., 2016, 109, p 094102.CrossRef J.C. Crowhurst, M.R. Armstrong, S.D. Gates, J.M. Zaug, H.B. Radousky and N.E. Teslich, Yielding of Tantalum at Strain Rates up to 109 s-1, Appl. Phys. Lett., 2016, 109, p 094102.CrossRef
12.
go back to reference Y. Wang, H. He and L. Wang, Critical Damage Evolution Model for Spall Failure of Ductile Metals, Mech. Mater., 2013, 56, p 131–141.CrossRef Y. Wang, H. He and L. Wang, Critical Damage Evolution Model for Spall Failure of Ductile Metals, Mech. Mater., 2013, 56, p 131–141.CrossRef
13.
go back to reference J.W. Wilkerson, On the Micromechanics of Void Dynamics at Extreme Rates, Int. J. Plast., 2017, 95, p 21–42.CrossRef J.W. Wilkerson, On the Micromechanics of Void Dynamics at Extreme Rates, Int. J. Plast., 2017, 95, p 21–42.CrossRef
14.
go back to reference M. Ponga, M. Ortiz and M.P. Ariz, Finite-Temperature Non-Equilibrium Quasi-Continuum Analysis of Nanovoid Growth in Copper at Low and High Strain Rates, Mech. Mater., 2015, 90, p 253–267.CrossRef M. Ponga, M. Ortiz and M.P. Ariz, Finite-Temperature Non-Equilibrium Quasi-Continuum Analysis of Nanovoid Growth in Copper at Low and High Strain Rates, Mech. Mater., 2015, 90, p 253–267.CrossRef
15.
go back to reference U. Asim, M.A. Siddiq and M. Demiral, Void Growth in High Strength Aluminium Alloy Single Crystals: a CPFEM Based Study, Model. Simul. Mater. Sci. Eng., 2017, 25, p 035010.CrossRef U. Asim, M.A. Siddiq and M. Demiral, Void Growth in High Strength Aluminium Alloy Single Crystals: a CPFEM Based Study, Model. Simul. Mater. Sci. Eng., 2017, 25, p 035010.CrossRef
16.
go back to reference Z.G. Liu, W.H. Wong and T.F. Guo, Void Behaviors from Low to High Triaxialities: Transition from Void Collapse to Void Coalescence, Int. J. Plast., 2016, 84, p 183–202.CrossRef Z.G. Liu, W.H. Wong and T.F. Guo, Void Behaviors from Low to High Triaxialities: Transition from Void Collapse to Void Coalescence, Int. J. Plast., 2016, 84, p 183–202.CrossRef
17.
go back to reference X.D. Ren, W.F. Zhou, Y.P. Ren, S.D. Xu, F.F. Liu, S.Q. Yuan, N.F. Ren and J.J. Huang, Dislocation Evolution and Properties Enhancement of GH2036 by Laser Shock Processing: Dislocation Dynamics Simulation and Experiment, Mater. Sci. Eng. A., 2016, 654, p 184–192.CrossRef X.D. Ren, W.F. Zhou, Y.P. Ren, S.D. Xu, F.F. Liu, S.Q. Yuan, N.F. Ren and J.J. Huang, Dislocation Evolution and Properties Enhancement of GH2036 by Laser Shock Processing: Dislocation Dynamics Simulation and Experiment, Mater. Sci. Eng. A., 2016, 654, p 184–192.CrossRef
18.
go back to reference Y. Liao and G.J. Cheng, Controlled Precipitation by Thermal Engineered Laser Shock Peening and its Effect on Dislocation Pinning: Multiscale Dislocation Dynamics Simulation and Experiments, Acta Mater., 2013, 61, p 1957–1967.CrossRef Y. Liao and G.J. Cheng, Controlled Precipitation by Thermal Engineered Laser Shock Peening and its Effect on Dislocation Pinning: Multiscale Dislocation Dynamics Simulation and Experiments, Acta Mater., 2013, 61, p 1957–1967.CrossRef
19.
go back to reference G. Li, Y. Wang, M. Xiang, Yi. Liao, K. Wang and J. Chen, Shock Response of Nanoporous Magnesium by Molecular Dynamics Simulations, Int. J. Mech. Sci., 2018, 141, p 143–156.CrossRef G. Li, Y. Wang, M. Xiang, Yi. Liao, K. Wang and J. Chen, Shock Response of Nanoporous Magnesium by Molecular Dynamics Simulations, Int. J. Mech. Sci., 2018, 141, p 143–156.CrossRef
20.
go back to reference J.F. Tang, J.C. Xiao, L. Deng, W. Li, X.M. Zhang and L. Wang, Shock Wave Propagation, Plasticity, and Void Collapse in Open-Cell Nanoporous Ta, Phys. Chem. Chem. Phys., 2018, 20, p 28039–28048.CrossRef J.F. Tang, J.C. Xiao, L. Deng, W. Li, X.M. Zhang and L. Wang, Shock Wave Propagation, Plasticity, and Void Collapse in Open-Cell Nanoporous Ta, Phys. Chem. Chem. Phys., 2018, 20, p 28039–28048.CrossRef
21.
go back to reference S. Rawat and P.M. Raole, Molecular Dynamics Investigation of Void Evolution Dynamics in Single Crystal Iron at Extreme Strain Rates, Comput. Mater. Sci., 2018, 154, p 393–404.CrossRef S. Rawat and P.M. Raole, Molecular Dynamics Investigation of Void Evolution Dynamics in Single Crystal Iron at Extreme Strain Rates, Comput. Mater. Sci., 2018, 154, p 393–404.CrossRef
22.
go back to reference V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2004, 52, p 1397–1408.CrossRef V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2004, 52, p 1397–1408.CrossRef
23.
go back to reference L.P. Dávila, P. Erhart, E.M. Bringa, M.A. Meyers, V.A. Lubarda, M.S. Schneider, R. Becker and M. Kumar, Atomistic Modeling of Shock-Induced Void Collapse in Copper, Appl. Phys. Lett., 2005, 86, p 161902.CrossRef L.P. Dávila, P. Erhart, E.M. Bringa, M.A. Meyers, V.A. Lubarda, M.S. Schneider, R. Becker and M. Kumar, Atomistic Modeling of Shock-Induced Void Collapse in Copper, Appl. Phys. Lett., 2005, 86, p 161902.CrossRef
24.
go back to reference W. Zhu, Z. Song, X. Deng, H. He and X. Cheng, Lattice Orientation Effect on the Nanovoid Growth in Copper Under Shock Loading, Phys. Rev. B., 2007, 75, p 024104.CrossRef W. Zhu, Z. Song, X. Deng, H. He and X. Cheng, Lattice Orientation Effect on the Nanovoid Growth in Copper Under Shock Loading, Phys. Rev. B., 2007, 75, p 024104.CrossRef
25.
go back to reference T.-T. Zhou, A.-M. He, P. Wang and J.-L. Shao, Spall Damage in Single Crystal Al with Helium Bubbles Under Decaying Shock Loading Via Molecular Dynamics Study, Comput. Mater. Sci., 2019, 162, p 255–267.CrossRef T.-T. Zhou, A.-M. He, P. Wang and J.-L. Shao, Spall Damage in Single Crystal Al with Helium Bubbles Under Decaying Shock Loading Via Molecular Dynamics Study, Comput. Mater. Sci., 2019, 162, p 255–267.CrossRef
26.
go back to reference X. Deng, W. Zhu, Y. Zhang, H. He and F. Jing, Configuration Effect on Coalescence of Voids in Single-Crystal Copper Under Shock Loading, Comput. Mater. Sci., 2010, 50, p 234–238.CrossRef X. Deng, W. Zhu, Y. Zhang, H. He and F. Jing, Configuration Effect on Coalescence of Voids in Single-Crystal Copper Under Shock Loading, Comput. Mater. Sci., 2010, 50, p 234–238.CrossRef
27.
go back to reference X. Peng, W. Zhu, K. Chen, X. Deng and Y. Wei, Molecular Dynamics Simulations of Void Coalescence in Monocrystalline Copper Under Loading and Unloading, Modell. J. Appl. Phys., 2016, 119, p 165901.CrossRef X. Peng, W. Zhu, K. Chen, X. Deng and Y. Wei, Molecular Dynamics Simulations of Void Coalescence in Monocrystalline Copper Under Loading and Unloading, Modell. J. Appl. Phys., 2016, 119, p 165901.CrossRef
28.
go back to reference K. Mackenchery, R.R. Valisetty, R.R. Namburu, A. Stukowski, A.M. Rajendran and A.M. Dongare, Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu, J. Appl. Phys., 2016, 119, p 044301.CrossRef K. Mackenchery, R.R. Valisetty, R.R. Namburu, A. Stukowski, A.M. Rajendran and A.M. Dongare, Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu, J. Appl. Phys., 2016, 119, p 044301.CrossRef
29.
go back to reference G. Agarwal and A.M. Dongare, Defect and damage Evolution During Spallation of Single Crystal Al: Comparison Between Molecular Dynamics and Quasi-Coarse-Grained Dynamics Simulations, Comput. Mater. Sci., 2018, 145, p 68–79.CrossRef G. Agarwal and A.M. Dongare, Defect and damage Evolution During Spallation of Single Crystal Al: Comparison Between Molecular Dynamics and Quasi-Coarse-Grained Dynamics Simulations, Comput. Mater. Sci., 2018, 145, p 68–79.CrossRef
30.
go back to reference S. Galitskiy, D.S. Ivanov and A.M. Dongare, Dynamic Evolution of Microstructure During Laser Shock Loading and Spall Failure of Single Crystal Al at the Atomic Scales, Phys. J. Appl. Phys., 2018, 124, p 205901.CrossRef S. Galitskiy, D.S. Ivanov and A.M. Dongare, Dynamic Evolution of Microstructure During Laser Shock Loading and Spall Failure of Single Crystal Al at the Atomic Scales, Phys. J. Appl. Phys., 2018, 124, p 205901.CrossRef
31.
go back to reference M. Xiang, J. Cui, Y. Yang, Yi. Liao, K. Wang, Y. Chen and J. Chen, Shock Responses of Nanoporous Aluminum by Molecular Dynamics Simulations, Int. J. Plast., 2017, 97, p 24–45.CrossRef M. Xiang, J. Cui, Y. Yang, Yi. Liao, K. Wang, Y. Chen and J. Chen, Shock Responses of Nanoporous Aluminum by Molecular Dynamics Simulations, Int. J. Plast., 2017, 97, p 24–45.CrossRef
32.
go back to reference Yi. Liao, M. Xiang, G. Li, K. Wang, X. Zhang and J. Chen, Molecular Dynamics Studies on Energy Dissipation and Void Collapse in Graded Nanoporous Nickel Under Shock Compression, Mech. Mater., 2018, 126, p 13–25.CrossRef Yi. Liao, M. Xiang, G. Li, K. Wang, X. Zhang and J. Chen, Molecular Dynamics Studies on Energy Dissipation and Void Collapse in Graded Nanoporous Nickel Under Shock Compression, Mech. Mater., 2018, 126, p 13–25.CrossRef
33.
go back to reference K.V. Reddy and S. Pal, Shock Velocity-Dependent Elastic-Plastic Collapse of Pre-Existing Stacking Fault Tetrahedron in Single Crystal Cu, Comput. Mater. Sci., 2020, 172, p 109390.CrossRef K.V. Reddy and S. Pal, Shock Velocity-Dependent Elastic-Plastic Collapse of Pre-Existing Stacking Fault Tetrahedron in Single Crystal Cu, Comput. Mater. Sci., 2020, 172, p 109390.CrossRef
34.
go back to reference P. Hirel and Atomsk: A Tool for Manipulating and Converting Atomic Data Files, Comput. Phys. Comm., 2015, 197, p 212–219.CrossRef P. Hirel and Atomsk: A Tool for Manipulating and Converting Atomic Data Files, Comput. Phys. Comm., 2015, 197, p 212–219.CrossRef
35.
go back to reference S. Plimpton and F. Parallel, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1–19.CrossRef S. Plimpton and F. Parallel, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, 117, p 1–19.CrossRef
36.
go back to reference X.W. Zhou, R.A. Johnson and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B., 2004, 69, p 144113.CrossRef X.W. Zhou, R.A. Johnson and H.N.G. Wadley, Misfit-Energy-Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers, Phys. Rev. B., 2004, 69, p 144113.CrossRef
37.
go back to reference P.N. Mayer and A.E. Mayer, Size Distribution of Pores in Metal Melts at Non-Equilibrium Cavitation and Further Stretching, and Similarity with the Spall Fracture of Solids, Int. J. Heat Mass Transf., 2018, 127, p 643–657.CrossRef P.N. Mayer and A.E. Mayer, Size Distribution of Pores in Metal Melts at Non-Equilibrium Cavitation and Further Stretching, and Similarity with the Spall Fracture of Solids, Int. J. Heat Mass Transf., 2018, 127, p 643–657.CrossRef
38.
go back to reference G.C. Ma, J.L. Fan and H.R. Gong, Mechanical Behavior of Cu-W Interface Systems Upon Tensile Loading from Molecular Dynamics Simulations, Comput. Mater. Sci., 2018, 152, p 165–168.CrossRef G.C. Ma, J.L. Fan and H.R. Gong, Mechanical Behavior of Cu-W Interface Systems Upon Tensile Loading from Molecular Dynamics Simulations, Comput. Mater. Sci., 2018, 152, p 165–168.CrossRef
39.
go back to reference T. Zhang, K. Zhou and Z.Q. Chen, Strain Rate Effect on Plastic Deformation of Nanocrystalline Copper Investigated by Molecular Dynamics, Mater. Sci. Eng. A., 2015, 648, p 23–30.CrossRef T. Zhang, K. Zhou and Z.Q. Chen, Strain Rate Effect on Plastic Deformation of Nanocrystalline Copper Investigated by Molecular Dynamics, Mater. Sci. Eng. A., 2015, 648, p 23–30.CrossRef
40.
go back to reference K. Zhou, B. Liu, YiJun Yao and K. Zhong, Grain Coarsening in Nanocrystalline Copper with Very Small Grain Size During Tensile Deformation, Mater. Sci. Eng. A., 2014, 595, p 118–123.CrossRef K. Zhou, B. Liu, YiJun Yao and K. Zhong, Grain Coarsening in Nanocrystalline Copper with Very Small Grain Size During Tensile Deformation, Mater. Sci. Eng. A., 2014, 595, p 118–123.CrossRef
41.
go back to reference M. Yuasa, T. Nakazawa and M. Mabuchi, Atomic Simulations of Dislocation Emission from Cu/Cu and Co/Cu Grain Boundaries, Mater. Sci. Eng. A., 2010, 528, p 260–267.CrossRef M. Yuasa, T. Nakazawa and M. Mabuchi, Atomic Simulations of Dislocation Emission from Cu/Cu and Co/Cu Grain Boundaries, Mater. Sci. Eng. A., 2010, 528, p 260–267.CrossRef
42.
go back to reference X.W. Zhou, H.N.G. Wadley, R.A. Johson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Matrens and T.F. Kelly, Atomic Scale Structure of Sputtered Metal Multilayers, Acta mater., 2001, 49, p 4005–4015.CrossRef X.W. Zhou, H.N.G. Wadley, R.A. Johson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Matrens and T.F. Kelly, Atomic Scale Structure of Sputtered Metal Multilayers, Acta mater., 2001, 49, p 4005–4015.CrossRef
43.
go back to reference A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.CrossRef A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.CrossRef
44.
go back to reference A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., 2012, 20, p 045021.CrossRef A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., 2012, 20, p 045021.CrossRef
45.
go back to reference C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B., 1998, 58(17), p 11085–11088.CrossRef C.L. Kelchner, S.J. Plimpton and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B., 1998, 58(17), p 11085–11088.CrossRef
46.
go back to reference A. Stukowski, V.V. Bulatov and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 085007.CrossRef A. Stukowski, V.V. Bulatov and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20, p 085007.CrossRef
47.
go back to reference F. Tang, Z. Jian, S. Xiao, X. Li, L. Wang, B. Huang, H. Deng and Hu. Wangyu, Molecular Dynamics Simulation of Cylindrically Converging Shock Response in Single Crystal Cu, Comput. Mater. Sci., 2020, 183, p 10984.CrossRef F. Tang, Z. Jian, S. Xiao, X. Li, L. Wang, B. Huang, H. Deng and Hu. Wangyu, Molecular Dynamics Simulation of Cylindrically Converging Shock Response in Single Crystal Cu, Comput. Mater. Sci., 2020, 183, p 10984.CrossRef
48.
go back to reference F.T. Latypov, A.E. Mayer and V.S. Krasnikov, Dynamics of Growth and Collapse of Nanopores in Copper, INT J. Solids Struct., 2020, 202, p 418–433.CrossRef F.T. Latypov, A.E. Mayer and V.S. Krasnikov, Dynamics of Growth and Collapse of Nanopores in Copper, INT J. Solids Struct., 2020, 202, p 418–433.CrossRef
49.
go back to reference E.M. Bringa, S. Traiviratana and M.A. Meyers, Void Initiation in fcc Metals: Effect of Loading Orientation and Nanocrystalline Effects, Acta Mater., 2010, 58, p 4458–4477.CrossRef E.M. Bringa, S. Traiviratana and M.A. Meyers, Void Initiation in fcc Metals: Effect of Loading Orientation and Nanocrystalline Effects, Acta Mater., 2010, 58, p 4458–4477.CrossRef
50.
go back to reference C. Qiao, Y. Guo, Z. Wang, Y. Zheng, R. Zhang, L. Chen, Y.-L. Chen, Su. Wan-Sheng, Yu. Jia and S. Wang, Effect of Body Defect on Mechanical Behaviors of Cu Nanowire Under Tension: A Molecular Dynamics Investigation, J. Mater. Sci., 2017, 52, p 13237–13246.CrossRef C. Qiao, Y. Guo, Z. Wang, Y. Zheng, R. Zhang, L. Chen, Y.-L. Chen, Su. Wan-Sheng, Yu. Jia and S. Wang, Effect of Body Defect on Mechanical Behaviors of Cu Nanowire Under Tension: A Molecular Dynamics Investigation, J. Mater. Sci., 2017, 52, p 13237–13246.CrossRef
Metadata
Title
Atomic Simulation of Crystallographic Orientation Effect on Void Shrinkage and Collapse in Single-Crystal Copper under Shock Compression
Authors
Man Wang
Yanqiu Zhang
Shuyong Jiang
Publication date
29-11-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 4/2022
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06438-0

Other articles of this Issue 4/2022

Journal of Materials Engineering and Performance 4/2022 Go to the issue

Premium Partners